【題目】已知函數(shù),若存在唯一的零點(diǎn),且,則的取值范圍是( )

A. B. C. D.

【答案】C

【解析】

分類討論當(dāng)a0時,容易判斷出不符合題意;當(dāng)a0時,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和極值之間的關(guān)系轉(zhuǎn)化為求極小值大于0即可.

當(dāng)a0時,fx)=﹣3x2+10,解得x=±,函數(shù)fx)有兩個零點(diǎn),不符合題意,舍去;

當(dāng)a0時,令f′(x)=3ax26x3axx)=0,解得x0x0,列表如下:

x

(﹣∞,0

0

0

(,+∞)

f′(x

+

0

0

+

fx

單調(diào)遞增

極大值

單調(diào)遞減

極小值

單調(diào)遞增

x→﹣∞,fx)→﹣∞,而f0)=10,∴存在x0,使得fx)=0,

不符合fx)存在唯一的零點(diǎn)x0,且x00,舍去.

當(dāng)a0時,f′(x)=3ax26x3axx)=0,解得x0x0,列表如下:

x

(﹣∞,

,0

0

0,+∞)

f′(x

0

+

0

fx

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

f0)=10,x+∞時,fx)→﹣∞,∴存在x00,使得fx0)=0,

fx)存在唯一的零點(diǎn)x0,且x00,∴極小值f)=a332+10

解得a24,∵a0,∴a<﹣2

綜上可知:a的取值范圍是(﹣∞,﹣2).

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃按月訂購一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;

設(shè)六月份一天銷售這種飲料的利潤為單位:元,且六月份這種飲料一天的進(jìn)貨量為單位:瓶,請判斷Y的數(shù)學(xué)期望是否在時取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足對任意,都有成立,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當(dāng)時,解不等式

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有形狀和大小完全相同的小球裝在三個盒子里,每個盒子裝個.其中第一個盒子中有個球標(biāo)有字母,有個球標(biāo)有字母;第二個盒子中有個紅球和個白球;第三個盒子中有個紅球和個白球.現(xiàn)按如下規(guī)則進(jìn)行試驗(yàn):先在第一個盒子中隨機(jī)抽取一個球,若取得字母的球,則在第二個盒子中任取一球;若取得字母的球,則在第三個盒子中任取一球.

(I)若第二次取出的是紅球,則稱試驗(yàn)成功,求試驗(yàn)成功的概率;

(II)若第二次在第二個盒子中取出紅球,則得獎金元,取出白球則得獎金元.若第二次在第三個盒子中取出紅球,則得獎金元,取出白球則得獎金元.求某人在一次試驗(yàn)中,所得獎金的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn),且與直線相切, 從圓外一點(diǎn)向該圓引切線,為切點(diǎn),

)求圓的方程;

)已知點(diǎn),且, 試判斷點(diǎn)是否總在某一定直線上,若是,求出的方程;若不是,請說明理由;

)若()中直線軸的交點(diǎn)為,點(diǎn)是直線上兩動點(diǎn),且以為直徑的圓過點(diǎn),圓是否過定點(diǎn)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點(diǎn).

1)求證: 平面平面;

2)求證: 平面

3)求三棱錐體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊長為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個定值等于;將這個結(jié)論推廣到空間是:棱長為的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個口袋中裝有5個黑球和3個白球,這些球除顏色外完全相同,從中摸出3個球,則摸出白球的個數(shù)多于黑球個數(shù)的概率為

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案