設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S8=4a3,a7=-2,則
a9=  (  ).
A.-6B.-4
C.-2 D.2
A
由已知
解得a1=10,d=-2,a9=a1+8d=-6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{bn}滿足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在實(shí)數(shù)p,q,對(duì)任意n∈N*都有pT1T2T3+…+Tnq成立,試求qp的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}滿足a1a(a>0,a∈N*),a1a2+…+anpan+1=0(p≠0,p≠-1,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若對(duì)每一個(gè)正整數(shù)k,若將ak+1,ak+2,ak+3按從小到大的順序排列后,此三項(xiàng)均能構(gòu)成等差數(shù)列,且公差為dk.①求p的值及對(duì)應(yīng)的數(shù)列{dk}.
②記Sk為數(shù)列{dk}的前k項(xiàng)和,問(wèn)是否存在a,使得Sk<30對(duì)任意正整數(shù)k恒成立?若存在,求出a的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

兩個(gè)正數(shù)a、b的等差中項(xiàng)是,一個(gè)等比中項(xiàng)是,且則雙曲線的離心率e等于___________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)對(duì)應(yīng)關(guān)系如下表所示,數(shù)列{an}滿足:a1=3,an+1=f(an),則a2 012=________.
x
1
2
3
f(x)
3
2
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列{an}中,a1=142,d=-2,從第一項(xiàng)起,每隔兩項(xiàng)取出一項(xiàng),構(gòu)成新的數(shù)列{bn},則此數(shù)列的前n項(xiàng)和Sn取得最大值時(shí)n的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Snn2,數(shù)列{bn}滿足bn,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式anTn;
(2)若對(duì)任意的n∈N*,不等式λTn<n+(-1)n恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列{an}的公差d≠0,它的第1,5,17項(xiàng)順次成等比數(shù)列,則這個(gè)等比數(shù)列的公比是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若數(shù)列{an}是等差數(shù)列,且a3+a7=4,則數(shù)列{an}的前9項(xiàng)和S9等于(  )
A.9B.18C.36D.72

查看答案和解析>>

同步練習(xí)冊(cè)答案