分析 (1)由a1,a2,a5成等比數(shù)列,可得${a}_{2}^{2}$=a1•a5,即$({a}_{1}+d)^{2}$=a1•(a1+4d),與a10=19=a1+9d,聯(lián)立解出即可得出.
(2)bn=an2n=(2n-1)•2n,利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(1)∵a1,a2,a5成等比數(shù)列,∴${a}_{2}^{2}$=a1•a5,即$({a}_{1}+d)^{2}$=a1•(a1+4d),
∵a10=19=a1+9d,聯(lián)立解得:a1=1,d=2.
∴an=2n-1.
(2)bn=an2n=(2n-1)•2n,
∴數(shù)列{bn}的前n項(xiàng)和Sn=2+3×22+…+(2n-1)•2n,
2Sn=22+3×23+…+(2n-3)•2n+(2n-1)•2n+1,
∴-Sn=2+2(22+23+…+2n)-(2n-1)•2n+1=$2×\frac{2({2}^{n}-1)}{2-1}$-2-(2n-1)•2n+1=(3-2n)•2n+1-6,
∴${S_n}=({2n-3}){2^{n+1}}+6$.
點(diǎn)評 本題考查了“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x(月份) | 1 | 2 | 3 | 4 | 5 |
y(萬盒) | 5 | 5 | 6 | 6 | 8 |
A. | 8.1萬盒 | B. | 8.2萬盒 | C. | 8.9萬盒 | D. | 8.6萬盒 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com