19.若$\vec a$與$\vec b$滿足$|{\vec a}|=8$,$|{\vec b}|=12$,則$|{\vec a+\vec b}|$的最小值為4.

分析 設(shè)$\vec a$與$\vec b$的夾角為θ,θ∈[0,π];利用|$\overrightarrow$|-|$\overrightarrow{a}$|≤|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|,
得出θ=π時(shí)$|{\vec a+\vec b}|$取得最小值.

解答 解:設(shè)$\vec a$與$\vec b$的夾角為θ,則θ∈[0,π];
∵$|{\vec a}|=8$,$|{\vec b}|=12$,
∴|$\overrightarrow$|-|$\overrightarrow{a}$|≤|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|,
即4≤|$\overrightarrow{a}$+$\overrightarrow$|≤20;
∴θ=π時(shí),$|{\vec a+\vec b}|$取得最小值為4.
故答案為:4.

點(diǎn)評 本題考查了平面向量數(shù)量積中模長公式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bcosC=(2a-c)cosB.
(Ⅰ)求B;
(Ⅱ)若BC=6,AC邊上的中線BD的長為7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,輸入n=5時(shí),則輸出的S=( 。
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=${log}_{2}|x|{+3}^{|x|}$,則f(x2-1)<3的解集為( 。
A.(-$\sqrt{2}$,-1)∪(-1,0)∪(0,1)∪(1,$\sqrt{2}$)B.(-$\sqrt{2}$,0)∪(0,$\sqrt{2}$)
C.(-$\sqrt{2}$,$\sqrt{2}$)D.(-$\sqrt{2}$,-1)∪(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an},{bn},{cn},已知${a_1}=4,{b_1}=3,{c_1}=5,{a_{n+1}}={a_n},{b_{n+1}}=\frac{{{a_n}+{c_n}}}{2}$,${c_{n+1}}=\frac{{{a_n}+{b_n}}}{2}({n∈{N^*}})$.
(1)求b2,c2,b3,c3;
(2)求數(shù)列{cn-bn}的通項(xiàng)公式;
(3)求證:對任意n∈N*,bn+cn為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)用分析法證明:$\sqrt{6}+\sqrt{7}>2\sqrt{2}+\sqrt{5}$
(2)已知a,b,c∈R,a+b+c>0,ab+bc+ca>0,abc>0.求證:a,b,c,全為正數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知一個(gè)平行四邊形三個(gè)頂點(diǎn)為A(0,-9),B(2,6),C(4,5),求第四個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知sin($\frac{π}{2}$+θ)<0,tan(π-θ)>0,則θ為第     象限角.( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示某公司的組織結(jié)構(gòu)圖,信息部被(  )直接領(lǐng)導(dǎo)
A.專家辦公室B.開發(fā)部C.總工程師D.總經(jīng)理

查看答案和解析>>

同步練習(xí)冊答案