9.已知曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{y=sinθ}\\{x=2cosθ}\end{array}\right.$(其中參數(shù)θ∈[0,π]),直線l:y=x+b.
(Ⅰ)寫出曲線C的普通方程并指出它的軌跡;
(Ⅱ)若曲線C與直線l只有一個公共點(diǎn),求b的取值范圍.

分析 (I)對于曲線C:利用sin2θ+cos2θ=1即可把參數(shù)方程化為普通方程,根據(jù)θ∈[0,π],可得0≤y≤1,它的軌跡是焦點(diǎn)在x軸上的上半橢圓.
(II)對b分類討論:當(dāng)直線l經(jīng)過點(diǎn)(2,0)時,b=-2,此時直線與橢圓只有一個公共點(diǎn).當(dāng)直線l經(jīng)過點(diǎn)(-2,0)時,b=2,此時直線l與橢圓有兩個公共點(diǎn).當(dāng)-2≤b<2時,滿足直線l與橢圓只有一個公共點(diǎn).設(shè)直線y=x+b與橢圓相切時只有一個公共點(diǎn).

解答 解:(I)對于曲線C:∵sin2θ+cos2θ=1,∴$\frac{{x}^{2}}{4}+{y}^{2}$=1,∵θ∈[0,π],∴sinθ∈[0,1],∴0≤y≤1,
∴曲線C的普通方程為:$\frac{{x}^{2}}{4}+{y}^{2}$=1,0≤y≤1,它的軌跡是焦點(diǎn)在x軸上的上半橢圓.
(II)當(dāng)直線l經(jīng)過點(diǎn)(2,0)時,b=-2,此時直線與橢圓只有一個公共點(diǎn).當(dāng)直線l經(jīng)過點(diǎn)(-2,0)時,b=2,
此時直線l與橢圓有兩個公共點(diǎn).當(dāng)-2≤b<2時,滿足直線l與橢圓只有一個公共點(diǎn).
設(shè)直線y=x+b與橢圓相切,
把y=x+b代入橢圓方程可得:x2+4(x+b)2=4,
化為5x2+8bx+4b2-4=0.
令△=64b2-20(4b2-4)=0,
解得b=$\sqrt{5}$$(-\sqrt{5}舍去)$,此時直線l與橢圓只有一個公共點(diǎn).
綜上可得:b∈[-2,2)∪$\{\sqrt{5}\}$.

點(diǎn)評 本題考查了參數(shù)方程化為普通方程用、直線與橢圓相交相切問題,考查了數(shù)形結(jié)合方法、分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),拋物線C的極坐標(biāo)方程為ρsin2θ=2cosθ.
(1)求出直線l的普通方程及拋物線C的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P(2,0),直線l與拋物線C相交于A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,A1A=AB,CB⊥A1ABB1
(1)求證:AB1⊥平面A1BC;
(2)若AC=5,BC=3,∠A1AB=60°,求三棱錐C-AA1B的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x||x-a|<4},B={x|x2-4x-5>0}
(1)若A∪B=R,求實(shí)數(shù)a的取值范圍.
(2)縣否存在實(shí)數(shù)a,使得A∩B=∅?若存在,則求a的取值范圍,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex-ax-1(a∈R),f′(x)為f(x)的導(dǎo)函數(shù).
(1)若f(x)>xlnx在(0,+∞)內(nèi)恒成立,求a的取值范圍.
(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于直線y=ex+m,當(dāng)x∈(t,t+2)時,其中,-2<t<0,討論函數(shù)g(x)=$\frac{{x}^{2}+3x+3}{f′(x)}$的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,已知AB為圓O的直徑,點(diǎn)D為線段AB上一點(diǎn),且AD=$\frac{1}{3}$DB,點(diǎn)C為圓O上一點(diǎn),且BC=$\sqrt{3}$AC.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.
(1)再BC上找一點(diǎn)E,使BC⊥平面PDE,并求出$\frac{CE}{BE}$的值;
(2)求平面PAC與平面PBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,已知直線$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{5}}}{5}t}\\{y=-1+\frac{{2\sqrt{5}}}{5}t}\end{array}}\right.$(t為參數(shù))與曲線$\left\{{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}}\right.$(θ為參數(shù))相交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=|x-2|-|x+1|.
(1)解不等式f(x)>1;
(2)當(dāng)x>0時,函數(shù)g(x)=$\frac{a{x}^{2}-x+1}{x}$(a>0)的最小值總大于函數(shù)f(x),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知cos(α+$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{α}{2}$-β)=$\frac{1}{3}$,其中0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π.
(1)求tan(2α+β)的值;
(2)求cos(3α-β)的值.

查看答案和解析>>

同步練習(xí)冊答案