17.在平面直角坐標系xOy中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),拋物線C的極坐標方程為ρsin2θ=2cosθ.
(1)求出直線l的普通方程及拋物線C的直角坐標方程;
(2)設(shè)點P(2,0),直線l與拋物線C相交于A,B兩點,求|PA|•|PB|的值.

分析 (1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),消去t可得普通方程.拋物線C的極坐標方程為ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,利用x=ρcosθ,y=ρsinθ可得直角坐標方程.
(2)把直線l的參數(shù)方程代入拋物線方程可得:8t2-15t-50=0,利用|PA|•|PB|=|t1||t2|=|t1t2|即可得出.

解答 解:(1)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),消去t可得:4x-3y-8=0.
拋物線C的極坐標方程為ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,可得直角坐標方程:y2=2x.
(2)把直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù))代入拋物線方程可得:8t2-15t-50=0,
∴t1t2=-$\frac{50}{8}$=$-\frac{25}{4}$.
∴|PA|•|PB|=|t1||t2|=|t1t2|=$\frac{25}{4}$.

點評 本題考查了參數(shù)方程化為普通方程、極坐標方程化為直角坐標方程、直線參數(shù)方程的應用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)a,b∈R,給出下列判斷:
①若$\frac{1}-\frac{1}{a}=1$,則a-b≤1;
②若a3-b3=1,則a-b≤1;
③若a,b均為正數(shù),且a2-b2=1,則a-b≤1;
④若a,b均為正數(shù),且$\sqrt{a}-\sqrt=1$,則a-b≥1.
則所有正確判斷的序號是( 。
A.①②B.C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=($\sqrt{2}$sin($\frac{π}{4}$x-$\frac{π}{8}$),cos2($\frac{π}{4}$x-$\frac{π}{8}$)-$\frac{1}{2}$),$\overrightarrow$=(cos($\frac{π}{4}$x-$\frac{π}{8}$),$\sqrt{2}$),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t).
(1)求函數(shù)f(x)的對稱軸方程;
(2)當t∈[-2,0]時,求函數(shù)g(t)的解析式;
(3)設(shè)函數(shù)h(x)=2|x-k|,H(x)=x|x-k|+2k-8,其中實數(shù)k為參數(shù).,滿足關(guān)于t的不等式$\sqrt{2}$k-5g(t)≤0有解,若對任意x1∈[4,+∞),存在x2∈(-∞,4],使得h(x2)=H(x1)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知x,y∈R,向量α=$[\begin{array}{l}{-1}\\{1}\end{array}]$是矩陣A=$[\begin{array}{l}{-1}&{x}\\{y}&{0}\end{array}]$的屬于特征值-2的一個特征向量.
(1)求矩陣A以及它的另一個特征值;
(2)求曲線F:9x2-2xy+y2=1在矩陣A對應的變換作用下得到的曲線F′的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)直線$l:\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t為參數(shù)),曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l與曲線C1交于A,B兩點,則|AB|=( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某5名學生的總成績與數(shù)學成績?nèi)绫恚?br />
學生ABCDE
總成績(x)482383421364362
數(shù)學成績(y)7865716461
(1)畫出散點圖;
(2)求數(shù)學成績對總成績的回歸方程;
(3)如果一個學生的總成績?yōu)?50分,試預測這個學生的數(shù)學成績(參考數(shù)據(jù):4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760).
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在平面直角坐標系xOy中,已知曲線C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)),以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點的橫坐標伸長為原來的$\sqrt{3}$倍,縱坐標伸長為原來的2倍后得到曲線C2,試寫出直線l的直角坐標方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在平面直角坐標xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=4+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),圓O的參數(shù)方程為$\left\{\begin{array}{l}x=4cosθ\\ y=4sinθ\end{array}\right.$(θ為參數(shù)),直線l與圓O相交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知曲線C的參數(shù)方程為:$\left\{\begin{array}{l}{y=sinθ}\\{x=2cosθ}\end{array}\right.$(其中參數(shù)θ∈[0,π]),直線l:y=x+b.
(Ⅰ)寫出曲線C的普通方程并指出它的軌跡;
(Ⅱ)若曲線C與直線l只有一個公共點,求b的取值范圍.

查看答案和解析>>

同步練習冊答案