A. | 2-($\frac{1}{2}$)n-1 | B. | 2-($\frac{1}{2}$)n | C. | 2-$\frac{n+2}{{2}^{n}}$ | D. | 2-$\frac{n+1}{{2}^{n}}$ |
分析 利用等比數列的求和公式計算可知nbn=n•$\frac{1}{{2}^{n}}$,進而利用錯位相減法計算即得結論.
解答 解:∵數列{bn}是首項為$\frac{1}{2}$,公比為$\frac{1}{2}$的等比數列,
∴nbn=n•$\frac{1}{{2}^{n}}$,
∴Tn=1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+…+n•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Tn=1•$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$+n•$\frac{1}{{2}^{n+1}}$,
兩式相減得:$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$,
∴Tn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-(n+2)•$\frac{1}{{2}^{n}}$,
故選:C.
點評 本題考查數列的通項及前n項和,考查錯位相減法,注意解題方法的積累,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 4+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 不全相等 | B. | 都相等,且為$\frac{8}{59}$ | C. | 均不相等 | D. | 都相等,且為$\frac{1}{7}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com