如圖是某工廠(chǎng)對(duì)一批新產(chǎn)品長(zhǎng)度(單位:mm)檢測(cè)結(jié)果的頻率分布直方圖.估計(jì)這批產(chǎn)品的中位數(shù)為( 。
A、20B、25
C、22.5D、22.75
考點(diǎn):頻率分布直方圖
專(zhuān)題:概率與統(tǒng)計(jì)
分析:根據(jù)頻率分布直方圖中,中位數(shù)的左右兩邊頻率相等,列出等式,求出中位數(shù)即可.
解答: 解:根據(jù)頻率分布直方圖,得;
∵0.02×5+0.04×5=0.3<0.5,
0.3+0.08×5=0.7>0.5;
∴中位數(shù)應(yīng)在20~25內(nèi),
設(shè)中位數(shù)為x,則
0.3+(x-20)×0.08=0.5,
解得x=22.5;
∴這批產(chǎn)品的中位數(shù)是22.5.
故選:C.
點(diǎn)評(píng):本題考查了利用頻率分布直方圖求數(shù)據(jù)的中位數(shù)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若已知(2x-1)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,則a0+3a1+5a2+7a3+9a4+11a5的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中為真命題的是( 。
A、若x≠0,則x+
1
x
≥2
B、命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1
C、“a=1”是“直線(xiàn)x-ay=0與直線(xiàn)x+ay=0互相垂直”的充要條件
D、若命題P:?x∈R,x2-x+1<0,則¬P:?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)O是△ABC的三邊中垂線(xiàn)的交點(diǎn),a,b,c分別為角A,B,C對(duì)應(yīng)的邊,已知b2-2b+c2=0,則
BC
AO
的范圍是( 。
A、[0,+∞)
B、[0,2)
C、[-
1
4
,+∞)
D、[-
1
4
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線(xiàn),α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①m⊥α,n∥α,則m⊥n;     
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,β∥γ,m⊥α,則m⊥γ;
④若α∩γ=m,β∩γ=n,m∥n,則α∥β.
其中正確命題的序號(hào)是( 。
A、①和③B、②和③
C、③和④D、①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
1
2
,(x≥0)
f(x+1),(x<0)
,若函數(shù)g(x)=f(x)+x+a在R上恰有兩個(gè)相異零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,0)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,-1),B(2,3),C(1,-2),D(-2,4),且AB和CD交于點(diǎn)P,試用向量法求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-f′(-1)x2-x,則f′(1)等于(  )
A、
2
3
B、-
2
3
C、6
D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(π+θ)=-
3
cos(2π-θ),|θ|<
π
2
,則θ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案