分析 設(shè)y=$\sqrt{3-{t}^{2}}$,y≥0,化為y2+t2=3(y≥0),
該曲線表示以原點(diǎn)為圓心,$\sqrt{3}$為半徑的上半圓,求出周長即可.
解答 解:設(shè)y=$\sqrt{3-{t}^{2}}$,y≥0,
則y2+t2=3(y≥0),
該曲線表示以原點(diǎn)為圓心,$\sqrt{3}$為半徑的上半圓,如圖所示;
所以y=${∫}_{0}^{x}$$\sqrt{3-{t}^{2}}$dt=$\frac{πd}{4}$=$\frac{\sqrt{3}π}{2}$.
點(diǎn)評(píng) 本題考查了定積分的集合意義與應(yīng)用問題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30 | B. | 28 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$ | B. | $\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$ | C. | $\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$ | D. | $\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m⊥n,m⊥α,n?α則n∥α | B. | m∥α,α⊥β,則m⊥β | ||
C. | m⊥β,α⊥β,則m∥α或m?α | D. | m⊥n,m⊥α,n⊥β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com