7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)D(-2,0)為橢圓C的左頂點(diǎn),點(diǎn)D與橢圓C的短軸端點(diǎn)的距離為$\sqrt{5}$,過點(diǎn)M(1,0)的直線l與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在直線l,使得$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$,并說明理由.

分析 (1)由題意,a=2,$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$,可得b=1,即可求出橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A(x1,y1),B(x2,y2),若$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$,則y2=-3y1,設(shè)直線AB的方程為x=my+1,代入橢圓方程可得(m2+4)y2+2my-3=0,利用韋達(dá)定理,即可得出結(jié)論.

解答 解:(1)由題意,a=2,$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$,
∴b=1,
∴橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(2)設(shè)A(x1,y1),B(x2,y2),
若$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$,則y2=-3y1,①
設(shè)直線AB的方程為x=my+1,代入橢圓方程可得(m2+4)y2+2my-3=0,
∴y1+y2=-$\frac{2m}{{m}^{2}+4}$②,y1y2=-$\frac{3}{{m}^{2}+4}$③,
由①③可得3y12=$\frac{3}{{m}^{2}+4}$,由①②可得-2y1=-$\frac{2m}{{m}^{2}+4}$,
消去y1得m2=m2+4,不成立,
∴不存在直線l,使得$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$.

點(diǎn)評 本題考查橢圓的方程與性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓M的圓心M(3,4)和三個(gè)點(diǎn)A(-1,1),B(1,0),C(-2,3).若A,B,C三個(gè)點(diǎn)一個(gè)在圓內(nèi),一個(gè)在圓上,一個(gè)在圓外,則圓M的方程是( 。
A.(x-3)2+(y-4)2=25B.(x-3)2+(y-4)2=20C.(x-3)2+(y-4)2=26D.(x-3)2+(y-4)2=27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正三棱柱ABC-A1B1C1,D是AC的中點(diǎn),求證:
(1)DB⊥面ACC1A1     
 (2)B1C∥面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}
(1)若A∩B=B,求a的值組成的集合C.
(2)若A∪B=B,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.6人站成一排,甲、乙、丙3人必須站在一起的所有排列的總數(shù)為(  )
A.A${\;}_{6}^{6}$B.3A${\;}_{3}^{3}$C.A${\;}_{3}^{3}$•A${\;}_{3}^{3}$D.4!•3!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對于雙曲線C有命題:若雙曲線C的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),則雙曲線C的漸近線是bx±ay=0.該命題的逆命題是若雙曲線C的漸近線是bx±ay=0,則雙曲線C的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0);判斷該命題的真假為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,如果輸出S=132,則判斷框中應(yīng)填(  )
A.i≥10?B.i≥11?C.i≥12?D.i≤11?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知命題p:實(shí)數(shù)m滿足:方程$\frac{x^2}{m-3a}+\frac{y^2}{m-4a}=1\;(a>0)$表示雙曲線;
命題q:實(shí)數(shù)m滿足方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}=1$表示焦點(diǎn)在y軸上的橢圓.
(1)若命題q為真命題,求m的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:ax+y-2=0在x軸和y軸上的截距相等,則實(shí)數(shù)a的值是( 。
A.1B.-1C.-2或-1D.-2或1

查看答案和解析>>

同步練習(xí)冊答案