2.6人站成一排,甲、乙、丙3人必須站在一起的所有排列的總數(shù)為( 。
A.A${\;}_{6}^{6}$B.3A${\;}_{3}^{3}$C.A${\;}_{3}^{3}$•A${\;}_{3}^{3}$D.4!•3!

分析 根據(jù)題意,甲、乙、丙三人相鄰,用捆綁法分析,把三個(gè)元素看做一個(gè)元素同其他的兩個(gè)元素進(jìn)行排列,注意這三個(gè)元素之間還有一個(gè)排列問題,由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,分2步進(jìn)行分析:
①、甲、乙、丙三人必須站在一起,將三人看做一個(gè)元素,考慮其順序有A33=3!種情況,
②、將這個(gè)元素與剩余的三個(gè)人進(jìn)行全排列,由A44=4!種情況,
故選:D.

點(diǎn)評(píng) 本題考查排列組合及簡單的計(jì)數(shù)問題,本題解題的關(guān)鍵是把相鄰的問題作為一個(gè)元素同其他的元素進(jìn)行排列,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.正三角形ABC的邊長為1,設(shè)$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{BC}$=$\vec b$,那么$\vec a$•$\vec b$的值是     ( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{2}{3}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.計(jì)算sin69°cos9°-sin21°cos81°的值是$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知兩點(diǎn)A(2,-1),B(-1,2),若直線y=kx-1與線段AB相交,則斜率k的取值范圍是k≤-3或k≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=$\left\{\begin{array}{l}2x+3,x∈(-∞,0)\\ 2{x^2}+1,x∈[0,+∞)\end{array}$,則f[f(-1)]的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)D(-2,0)為橢圓C的左頂點(diǎn),點(diǎn)D與橢圓C的短軸端點(diǎn)的距離為$\sqrt{5}$,過點(diǎn)M(1,0)的直線l與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在直線l,使得$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓錐的頂角120°,母線長為2,則過頂點(diǎn)的截面中,面積最大的截面面積是    2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,BC=1,CC1=2,$B{C_1}=\sqrt{3}$.
(Ⅰ)求證:BC1⊥平面ABC;
(Ⅱ)當(dāng)$AB=\frac{3}{2}$時(shí),求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.?dāng)?shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)證明:數(shù)列{$\frac{{a}_{n}}{n}$}是等差數(shù)列;
(2)設(shè)${b_n}=\frac{1}{{\sqrt{a_n}•\sqrt{{a_{n+1}}}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案