10.圓的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù),0≤θ<2π),若Q(-2,2$\sqrt{3}$)是圓上一點,則對應(yīng)的參數(shù)θ的值是$\frac{2π}{3}$.

分析 根據(jù)題意,由圓的參數(shù)方程以及Q的坐標,可得$\left\{\begin{array}{l}{-2=4cosθ}\\{2\sqrt{3}=4sinθ}\end{array}\right.$,結(jié)合θ的范圍,計算可得答案.

解答 解:根據(jù)題意,圓的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$,
若Q(-2,2$\sqrt{3}$)是圓上一點,則有$\left\{\begin{array}{l}{-2=4cosθ}\\{2\sqrt{3}=4sinθ}\end{array}\right.$,即$\left\{\begin{array}{l}{cosθ=-\frac{1}{2}}\\{sinθ=\frac{\sqrt{3}}{2}}\end{array}\right.$,
又由0≤θ<2π,
解可得θ=$\frac{2π}{3}$;
故答案為:$\frac{2π}{3}$.

點評 本題考查圓的參數(shù)方程,關(guān)鍵是掌握圓的參數(shù)方程的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|2x-1|+|2x-3|.
(1)求不等式f(x)≤4的解集;
(2)若關(guān)于x的不等式f(x)<|a-1|的解集非空,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)是定義在R上連續(xù)的偶函數(shù),f(x)在[0,+∞)遞增且f(2)=0,則函數(shù)y=|f(1-x)|的單調(diào)遞增區(qū)間為[-1,1]和[3,+∞)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)集合A={(x,y)|(x-4)2+y2=r2,r>0},B={(x,y)|x2+(y-3)2=36},若A∩B中有且只有一個元素,則r的取值集合為{1,11}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=1-x2,函數(shù)g(x)=2ax-3a+2(a>0),若對任意的x1∈[0,1]存在x2∈[$\frac{1}{2}$,1]使得f(x1)=g(x2)成立,則實數(shù)a的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下數(shù)據(jù)資料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(℃)1011131286
就診人數(shù)y(個)222529261612
該興趣小組確定的研究方案是:先從這6組(每個有序數(shù)對(x,y)叫作一組)數(shù)據(jù)中隨機選取2組作為檢驗數(shù)據(jù),用剩下的4組數(shù)據(jù)求線性回歸方程.
(1)求選取的2組數(shù)據(jù)恰好來自相鄰兩個月的概率;
(2)若選取的是1月和6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得到的線性回歸方程是否是理想的?
參考公式:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知(x+2)2n=a0+a1(x+1)+a2(x+1)2+…+a2n-1(x+1)2n-1+a2n(x+1)2n,n≥2,n∈N+,則a2+a4+…+a2n-2+a2n=2${\;}^{2n-1}-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若某一射手射擊所得環(huán)數(shù)X的分布列為
X45678910
P0.020.040.060.090.280.290.22
則此射手“射擊一次命中環(huán)數(shù)X≥7”的概率是( 。
A.0.88B.0.12C.0.79D.0.09

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x>-1}\\{y≤1}\\{x-y+1≤0}\end{array}\right.$,則(x-2)2+y2的最小值為5.

查看答案和解析>>

同步練習(xí)冊答案