A. | $\sqrt{2}$-1 | B. | 2$\sqrt{2}$-2 | C. | $\sqrt{2}$+1 | D. | 2$\sqrt{2}$+2 |
分析 設(shè)P(x,y),利用兩點間的距離公式求出m的表達式,結(jié)合基本不等式的性質(zhì)求出m的最值,結(jié)合雙曲線的定義進行求解即可.
解答 解:設(shè)P(x,y),則由題意得A(-1,0),B(1,0),
則m=$\frac{|PA|}{|PB|}$=$\sqrt{\frac{(x+1)^{2}+{y}^{2}}{(x-1)^{2}+{y}^{2}}}$=$\sqrt{\frac{(x+1)^{2}+4x}{(x-1)^{2}+4x}}$=$\sqrt{1+\frac{4x}{{x}^{2}+2x+1}}$,
當(dāng)x=0時,m=1,
當(dāng)x>0時,m=$\sqrt{1+\frac{4x}{{x}^{2}+2x+1}}$=$\sqrt{1+\frac{4}{x+\frac{1}{x}+2}}$≤$\sqrt{1+\frac{4}{2+2\sqrt{x•\frac{1}{x}}}}$=$\sqrt{2}$,
當(dāng)且僅當(dāng)x=1時,取等號,∴此時P(1,±2),
|PA|=2$\sqrt{2}$,|PB|=2,
∵點P在以A,B為焦點的雙曲線上,
∴由雙曲線的定義得2a=|PA|-|PB|=2$\sqrt{2}-2$,
故選:B.
點評 本題主要考查雙曲線性質(zhì)的應(yīng)用,利用兩點間的距離公式結(jié)合基本不等式求出m的最值是解決本題的關(guān)鍵.考查學(xué)生的計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π | B. | 7π | C. | 12π | D. | 14π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{4}$ | B. | 向右平移$\frac{π}{4}$ | C. | 向右平移$\frac{π}{8}$ | D. | 向左平移$\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)g(2015)<g(2017) | B. | f(2)g(2015)>g(2017) | C. | g(2015)<f(2)g(2017) | D. | g(2015)>f(2)g(2017) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
A. | 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好運動與性別有關(guān)” | |
B. | 有99%以上的把握認(rèn)為“愛好運動與性別有關(guān)” | |
C. | 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好運動與性別無關(guān)” | |
D. | 有99%以上的把握認(rèn)為“愛好運動與性別無關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{a}^{3}}{6}$ | B. | $\frac{{a}^{3}}{3}$ | C. | $\frac{{a}^{3}}{2}$ | D. | $\frac{π{a}^{3}}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥α,α∩β=n,則m∥n | B. | 若m⊥α,m⊥n,則n∥α | ||
C. | 若m⊥α,n⊥β,α⊥β,則m⊥n | D. | 若α⊥β,α∩β=n,m⊥n,則m⊥β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com