【題目】已知函數(shù),.
(1)當時,討論函數(shù)的零點個數(shù);
(2)若在上單調(diào)遞增,且求c的最大值.
【答案】(1)見解析(2)2
【解析】
(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點問題,利用導函數(shù)判斷的圖象,即可求解;
(2)由題可得在上恒成立,設(shè),利用導函數(shù)可得,則,即,再設(shè),利用導函數(shù)求得的最小值,則,進而求解.
(1)當時,,定義域為,
由可得,
令,則,
由,得;由,得,
所以在上單調(diào)遞增,在上單調(diào)遞減,
則的最大值為,
且當時,;當時,,
由此作出函數(shù)的大致圖象,如圖所示.
由圖可知,當時,直線和函數(shù)的圖象有兩個交點,即函數(shù)有兩個零點;
當或,即或時,直線和函數(shù)的圖象有一個交點,即函數(shù)有一個零點;
當即時,直線與函數(shù)的象沒有交點,即函數(shù)無零點.
(2)因為在上單調(diào)遞增,即在上恒成立,
設(shè),則,
①若,則,則在上單調(diào)遞減,顯然,
在上不恒成立;
②若,則,在上單調(diào)遞減,當時,,故,單調(diào)遞減,不符合題意;
③若,當時,,單調(diào)遞減,
當時,,單調(diào)遞增,
所以,
由,得,
設(shè),則,
當時,,單調(diào)遞減;
當時,,單調(diào)遞增,
所以,所以,
又,所以,即c的最大值為2.
科目:高中數(shù)學 來源: 題型:
【題目】某種水箱用的“浮球”是由兩個相同半球和一個圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強該“浮球”的牢固性,給“浮球”內(nèi)置一“雙蝶形”防壓卡,防壓卡由金屬材料桿,,,,,及焊接而成,其中,分別是圓柱上下底面的圓心,,,,均在“浮球”的內(nèi)壁上,AC,BD通過“浮球”中心,且、均與圓柱的底面垂直.
(1)設(shè)與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫出的取值范圍;
(2)研究表明,四邊形的面積越大,“浮球”防壓性越強,求四邊形面積取最大值時,點到圓柱上底面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:定義在上的函數(shù)的極大值為.
(1)求實數(shù)的值;
(2)若關(guān)于的不等式有且只有一個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是軸正半軸上兩點(在的左側(cè)),且,過,作軸的垂線,與拋物線在第一象限分別交于,兩點.
(Ⅰ)若,點與拋物線的焦點重合,求直線的斜率;
(Ⅱ)若為坐標原點,記的面積為,梯形的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面,四邊形是直角梯形,,F是的中點,E是上的一點,則下列說法正確的是( )
A.若,則平面
B.若,則四棱錐的體積是三棱錐體積的6倍
C.三棱錐中有且只有三個面是直角三角形
D.平面平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為’(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求和的直角坐標方程;
(2)已知直線與軸交于點,且與曲線交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是橢圓的左右焦點.
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點, ,求點的坐標.
(Ⅱ)若直線與圓相切,交橢圓于兩點,是否存在這樣的直線,使得?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中,,,,.
(1)證明:平面;
(2)在線段上是否存在點,使得平面與平面所成的銳二面角為,若存在,求出線段的長度;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com