13.將下列曲線的直角坐標(biāo)方程化為極坐標(biāo)方程.
(1)直線x+y=0
(2)圓x2+y2+2ax=0(a≠0)

分析 (1)(2)利用極坐標(biāo)與直角坐標(biāo)方程的互化公式即可得出.

解答 解:(1)直線x+y=0即y=-x,
∴極坐標(biāo)方程為:$θ=\frac{3π}{4}(ρ∈R)$.
(2)圓x2+y2+2ax=0(a≠0),利用互化公式:ρ2=x2+y2,x=ρcosθ,可得ρ2=-2aρcosθ,即ρ=-2acosθ.

點(diǎn)評(píng) 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|y=$\sqrt{{2}^{x}-1}$),B={x|x2-1>0},則A∩B=( 。
A.(-∞,-1)B.[0,1)C.(1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=-x2+2x,x∈[-1,3],則任取一點(diǎn)x0∈[-1,3],使得f(x0)≥0的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若a3a7=16a5,a3+a5=20,則( 。
A.Sn=2an-1B.Sn=2an-2C.Sn=4-2anD.Sn=3-2an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}為等差數(shù)列,若a3+a11=24,a4=3,則數(shù)列{an}的通項(xiàng)公式為an=3n-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)在區(qū)間(0,+∞)上的圖象如圖所示,記r=f′(1),p=f′(2),q=f(2)-f(1).則r、p、q之間的大小關(guān)系為( 。
A.r<p<qB.q<p<rC.r<q<pD.p<q<r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn)為F,右頂點(diǎn)為A,過F且與x軸垂直的直線交雙曲線于B,C兩點(diǎn),若△ABC為直角三角形,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若a1=3,a2=6,an+2=an+1-an,則a33=( 。
A.3B.-3C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=-cos2x+2sinx+2的最小值為(  )
A.0B.-1C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案