【題目】已知函數(shù),函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.

【答案】(1) 故函數(shù)上單調(diào)遞增,在上單調(diào)遞減;(2) .

【解析】試題分析:

(Ⅰ)根據(jù)題意得到的解析式和定義域,求導后根據(jù)導函數(shù)的符號判斷單調(diào)性.(Ⅱ)分析題意可得對任意, 恒成立,構造函數(shù),則有對任意, 恒成立,然后通過求函數(shù)的最值可得所求.

試題解析:

(I)由題意得, , ∴ .

時, ,函數(shù)上單調(diào)遞增;

時,令,解得;令,解得.

故函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

綜上,當時,函數(shù)上單調(diào)遞增;

時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

(II)由題意知.

時,函數(shù)單調(diào)遞增.

不妨設 ,又函數(shù)單調(diào)遞減,

所以原問題等價于:當時,對任意,不等式 恒成立,

對任意 恒成立.

,

由題意得上單調(diào)遞減.

所以對任意, 恒成立.

, ,

上恒成立.

上單調(diào)遞增,

所以函數(shù)上的最大值為.

,解得.

故實數(shù)的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對有個元素的總體進行抽樣,先將總體分成兩個子總體m是給定的正整數(shù),且),再從每個子總體中各隨機抽取2個元素組成樣本,用表示元素ij同時出現(xiàn)在樣本中的概率,則_________;所有的和等于________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型科學競技真人秀節(jié)目挑選選手的方式為:不但要對選手的空間感知、照相式記憶能力進行考核,而且要讓選手經(jīng)過名校最權威的腦力測試,120分以上才有機會入圍.某重點高校準備調(diào)查腦力測試成績是否與性別有關,在該高校隨機抽取男、女學生各100名,然后對這200名學生進行腦力測試.規(guī)定:分數(shù)不小于120分為入圍學生,分數(shù)小于120分為未入圍學生.已知男生入圍24人,女生未入圍80人.

1)根據(jù)題意,填寫下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%以上的把握認為腦力測試后是否為入圍學生與性別有關;

性別

入圍人數(shù)

未入圍人數(shù)

總計

男生

女生

總計

2)用分層抽樣的方法從入圍學生中隨機抽取11名學生,求這11名學生中男、女生人數(shù);若抽取的女生的腦力測試分數(shù)各不相同(每個人的分數(shù)都是整數(shù)),分別求這11名學生中女生測試分數(shù)平均分的最小值.

附:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式2lnxax2+2a2x+1恒成立,則a的最小整數(shù)值是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=|x+1||2x2|的最大值為M,正實數(shù)a,b滿足a+bM

1)求2a2+b2的最小值;

2)求證:aabbab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=ax2+2axlnx1aR

1)當a時,求fx)的單調(diào)區(qū)間及極值;

2)若a為整數(shù),且不等式fxx對任意x∈(0,+∞)恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).

1)若函數(shù)的圖象在點處的切線方程為,求實數(shù)a的值;

2)若函數(shù)2個不同的零點,

①求實數(shù)a的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,動點到兩定點、構成,且,設動點的軌跡為

1)求軌跡的方程;

2)設直線軸交于點,與軌跡相交于點,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)試比較的大小.

2)若函數(shù)的兩個零點分別為,

①求的取值范圍;

②證明:.

查看答案和解析>>

同步練習冊答案