【題目】(1)試比較與的大小.
(2)若函數(shù)的兩個(gè)零點(diǎn)分別為,,
①求的取值范圍;
②證明:.
【答案】(1)答案見解析.(2)①.②證明見解析
【解析】
(1)設(shè),然后利用導(dǎo)數(shù)求出的單調(diào)性,然后結(jié)合函數(shù)值即可比較出大。
(2)①利用導(dǎo)數(shù)求出的最小值即可;
②不妨設(shè),則,結(jié)合(1)中結(jié)論可推出,,然后可得,將其分解因式可證明.
(1)設(shè),
則,
故在上單調(diào)遞減.
因?yàn)?/span>,
所以當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.
即當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),.
(2)①因?yàn)?/span>,所以,
令,得;令,得,
則在上單調(diào)遞減,在上單調(diào)遞增,
故.
因?yàn)?/span>有兩個(gè)零點(diǎn),所以,即.
因?yàn)?/span>,,
所以當(dāng)有兩個(gè)零點(diǎn)時(shí),的取值范圍為.
②證明:因?yàn)?/span>,是的兩個(gè)零點(diǎn),
不妨設(shè),則.
因?yàn)?/span>,,
所以,,
即,,
則,即,
即.
因?yàn)?/span>,所以,則,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a>0,0≤x<2π,若函數(shù)y=cos2x-asinx+b的最大值為0,最小值為-4,試求a與b的值,并求使y取得最大值和最小值時(shí)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從集市上買回來的蔬菜仍存有殘留農(nóng)藥,食用時(shí)需要清洗數(shù)次,統(tǒng)計(jì)表中的表示清洗的次數(shù),表示清洗次后千克該蔬菜殘留的農(nóng)藥量(單位:微克).
x | 1 | 2 | 3 | 4 | 5 |
y | 4.5 | 2.2 | 1.4 | 1.3 | 0.6 |
(1)在如圖的坐標(biāo)系中,描出散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為清洗次后千克該蔬菜殘留的農(nóng)藥量的回歸方程類型;(給出判斷即可,不必說明理由)
(2)根據(jù)判斷及下面表格中的數(shù)據(jù),建立關(guān)于的回歸方程;
表中,.
3 | 2 | 0.12 | 10 | 0.09 | -8.7 | 0.9 |
(3)對(duì)所求的回歸方程進(jìn)行殘差分析.
附:①線性回歸方程中系數(shù)計(jì)算公式分別為,;
②,說明模擬效果非常好;
③,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動(dòng):對(duì)首次參加體檢的人員,按200元/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員的后續(xù)體檢給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
該休檢中心從所有會(huì)員中隨機(jī)選取了100位對(duì)他們?cè)诒局行膮⒓芋w檢的次數(shù)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如表:
假設(shè)該體檢中心為顧客體檢一次的成本費(fèi)用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)已知某顧客在此體檢中心參加了3次體檢,求這3次體檢,該體檢中心的平均利潤(rùn);
(2)該體檢中心要從這100人里至少體檢3次的會(huì)員中,按體檢次數(shù)用分層抽樣的方法抽出5人,再?gòu)倪@5人中抽取2人,每人發(fā)放現(xiàn)金200元.用5表示體檢3次的會(huì)員所得現(xiàn)金和,求的分布列及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】原始的蚊香出現(xiàn)在宋代.根據(jù)宋代冒蘇軾之名編寫的《格物粗談》記載:“端午時(shí),貯浮萍,陰干,加雄黃,作紙纏香,燒之,能祛蚊蟲.”如圖,為某校數(shù)學(xué)興趣小組用數(shù)學(xué)軟件制作的“螺旋蚊香”,畫法如下:在水平直線上取長(zhǎng)度為1的線段,做一個(gè)等邊三角形,然后以點(diǎn)為圓心,為半徑逆時(shí)針畫圓弧,交線段的延長(zhǎng)線于點(diǎn),再以點(diǎn)為圓心,為半徑逆時(shí)針畫圓弧,交線段的延長(zhǎng)線于點(diǎn),以此類推,當(dāng)?shù)玫降?/span>“螺旋蚊香”與直線恰有個(gè)交點(diǎn)時(shí),“螺旋蚊香”的總長(zhǎng)度的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字且至少有兩個(gè)數(shù)字是偶數(shù)的四位數(shù),則這樣的四位數(shù)的個(gè)數(shù)為( )
A.64B.72C.96D.144
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com