分析 建立空間直角坐標系,設(shè)正方體的邊長為1,表示出向量$\overrightarrow{{BE}_{1}}$、$\overrightarrow{{DF}_{1}}$,求出$\overrightarrow{{BE}_{1}}$、$\overrightarrow{{DF}_{1}}$所成角的余弦值即可.
解答 解:建立空間直角坐標系如圖所示,
設(shè)正方體的邊長為1,由${B_1}{E_1}={D_1}{F_1}=\frac{{{A_1}{B_1}}}{4}$,
則B(1,1,0),D(0,0,0),
E1(1,$\frac{3}{4}$,1),F(xiàn)1(0,$\frac{1}{4}$,1),
則$\overrightarrow{{BE}_{1}}$=(0,-$\frac{1}{4}$,1),
$\overrightarrow{{DF}_{1}}$=(0,$\frac{1}{4}$,1),
$\overrightarrow{{BE}_{1}}$•$\overrightarrow{{DF}_{1}}$=-$\frac{1}{16}$+1=$\frac{15}{16}$,
|$\overrightarrow{{BE}_{1}}$|=|$\overrightarrow{{DF}_{1}}$|=$\sqrt{\frac{1}{16}+1}$=$\frac{\sqrt{17}}{4}$;
∴$\overrightarrow{{BE}_{1}}$、$\overrightarrow{{DF}_{1}}$所成角的余弦值是:
cosθ=$\frac{\overrightarrow{{BE}_{1}}•\overrightarrow{{DF}_{1}}}{|\overrightarrow{{BE}_{1}}|×|\overrightarrow{{DF}_{1}}|}$=$\frac{\frac{15}{16}}{\frac{\sqrt{17}}{4}×\frac{\sqrt{17}}{4}}$=$\frac{15}{17}$.
故答案為:$\frac{15}{17}$.
點評 本題考查了空間兩條直線所成角的運算問題,可以利用空間向量進行求解,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com