12.已知集合M={x|x>1},N={x|x2-2x≥0},則M∩N=( 。
A.(-∞,0]∪(1,+∞)B.(1,2]C.(1,+∞)D.[2,+∞)

分析 先求出集合N,由此能求出集合M∩N.

解答 解:∵集合M={x|x>1},
N={x|x2-2x≥0}={x|x≤0或x≥2},
∴M∩N={x|x≥2}=[2,+∞).
故選:D.

點(diǎn)評 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集性質(zhì)、定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{x+1}{x-1},x≠1}\\{1,x=1}\end{array}\right.$,則f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+f($\frac{3}{2016}$)+…+f($\frac{4031}{2016}$)的值為4031.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.取一段長為5米的繩子,拉直后在任意位置剪斷,那么剪得兩段的長度都不小于1米的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,則經(jīng)過點(diǎn)P(φ,0),斜率為A的直線的方程為( 。
A.y=$\sqrt{2}$(x-$\frac{3π}{4}$)B.y=$\sqrt{2}$(x-$\frac{π}{4}$)C.y=$\sqrt{3}$(x-$\frac{π}{3}$)D.y=$\sqrt{3}$(x-$\frac{2π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+4x+3,
(1)若f(a+1)=0,求a的值;
(2)若g(x)=f(x)+cx為偶函數(shù),求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=$\frac{x}{1+x}$,
(1)求f(x)+f($\frac{1}{x}$)的值;
(2)求f(1)+f(2)+…+f(7)+f(1)+f($\frac{1}{2}$)+…+f($\frac{1}{7}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,若a1=2,則{an}的前2017項(xiàng)的積為( 。
A.1B.2C.-6D.-586

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax 2+a 2x+2b-a 3,當(dāng)x∈(-2,6)時(shí),f(x)>0,當(dāng)x∈(-∞,-2)∪(6,+∞)時(shí),f(x)<0,
(1)求f(x)的解析式.
(2)求f(x)在區(qū)間[1,10]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某機(jī)構(gòu)其中初級職務(wù)干部63人,中級職務(wù)干部42人,高級職務(wù)干部22人,上級部門為了了解該機(jī)構(gòu)對某項(xiàng)改革的意見,要從中抽取28人,最適合抽取樣本的方法( 。
A.系統(tǒng)抽樣
B.簡單隨機(jī)抽樣
C.分層抽樣
D.先從高級職務(wù)干部中剔除1人,再用分層抽樣

查看答案和解析>>

同步練習(xí)冊答案