10.已知函數(shù)f(x)=($\frac{1}{2}$x+a)(x-$\sqrt{3}$)為偶函數(shù),則f(3)=3.

分析 根據(jù)函數(shù)奇偶性的定義建立方程求出a的值即可.

解答 解:∵數(shù)f(x)=($\frac{1}{2}$x+a)(x-$\sqrt{3}$)為偶函數(shù),
∴f(-$\sqrt{3}$)=f($\sqrt{3}$),
即[$\frac{1}{2}$×(-$\sqrt{3}$)+a]($-\sqrt{3}$-$\sqrt{3}$)=[$\frac{1}{2}$×($\sqrt{3}$)+a]($\sqrt{3}$-$\sqrt{3}$)=0,
得a=$\frac{\sqrt{3}}{2}$,
即f(x)=($\frac{1}{2}$x+$\frac{\sqrt{3}}{2}$)(x-$\sqrt{3}$),
則f(3)=($\frac{3}{2}$+$\frac{\sqrt{3}}{2}$)(3-$\sqrt{3}$)=$\frac{(3+\sqrt{3})(3-\sqrt{3})}{2}$=$\frac{9-3}{2}$=$\frac{6}{2}$=3,
故答案為:3

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性的性質(zhì)求出a的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x-2).若當(dāng)x∈[-3,0]時(shí),f(x)=6-x,則f(2017)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.228與1995的最大公約數(shù)是( 。
A.57B.59C.63D.67

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,|$\overrightarrow{a}$|≥1,|$\overrightarrow$|≥3,且|$\overrightarrow{a}$|,$\overrightarrow{a}$•$\overrightarrow$,|$\overrightarrow$|成等比數(shù)列,則cos2θ的最大值為( 。
A.-$\frac{1}{2}$B.-$\frac{2}{3}$C.-$\frac{1}{3}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知x,y滿足不等式$\left\{\begin{array}{l}3x+2y-6≤0\\ 2x-y+2≥0\\ x-y-3≤0\end{array}\right.$,則x+y的最大值是( 。
A.$\frac{20}{7}$B.$\frac{18}{7}$C.$\frac{16}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=(c-1)lnx-(x-1)lnc(c≠1).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)設(shè)c>1,證明:當(dāng)x∈(1,c)時(shí),f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t為參數(shù))中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4cosθ.
(I)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(II)設(shè)直線l與曲線C相交于P,Q兩點(diǎn),求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如果函數(shù)f(x)=log3x,那么f($\frac{1}{3}$)等于(  )
A.-1B.$-\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a∈R,則“a=1“是“直線l1:a2x+2y-1=0與直線l2:x+2y+4=0平行“的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案