5.已知x,y滿足不等式$\left\{\begin{array}{l}3x+2y-6≤0\\ 2x-y+2≥0\\ x-y-3≤0\end{array}\right.$,則x+y的最大值是( 。
A.$\frac{20}{7}$B.$\frac{18}{7}$C.$\frac{16}{7}$D.$\frac{2}{7}$

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z=x+y的最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
設(shè)z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)A時,直線y=-x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{3x+2y-6=0}\\{2x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2}{7}}\\{y=\frac{18}{7}}\end{array}\right.$,即A($\frac{2}{7}$,$\frac{18}{7}$),
代入目標(biāo)函數(shù)z=x+y得z=$\frac{2}{7}$+$\frac{18}{7}$=$\frac{20}{7}$.
即目標(biāo)函數(shù)z=x+y的最大值為$\frac{20}{7}$
故選:A

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax2-4ax+2+3b(a>0),若f(x)在區(qū)間[3,4]上有最大值5,最小值-4,
(1)求a,b的值
(2)若g(x)=f(x)+(m+1)x在[3,5]上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=log2x•log22x取得最小值時x的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{1}{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{1}{2}+\frac{\sqrt{2}}{2}t}\end{array}\right.$,橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$.在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立的極坐標(biāo)系中,點(diǎn)A的坐標(biāo)為($\frac{\sqrt{2}}{2}$,$\frac{3}{4}$π).
(1)將點(diǎn)A的坐標(biāo)化為直角坐標(biāo)系下的坐標(biāo),橢圓的參數(shù)方程化為普通方程;
(2)直線l與橢圓C交于P、Q兩點(diǎn),求|AP|•|AQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知α∈(0,π),sin(α+$\frac{π}{4}$)=-$\frac{3}{5}$,則tanα=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=($\frac{1}{2}$x+a)(x-$\sqrt{3}$)為偶函數(shù),則f(3)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.四個人圍坐在一張圓桌旁,每個人面前放著完全相同的硬幣,所有人同時翻轉(zhuǎn)自己的硬幣.若硬幣正面朝上,則這個人站起來; 若硬幣正面朝下,則這個人繼續(xù)坐著.那么,沒有相鄰的兩個人站起來的概率為(  )
A.$\frac{1}{2}$B.$\frac{5}{16}$C.$\frac{7}{16}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在空間中,給出下列四個命題:
①平行于同一直線的兩條直線平行;   ②平行于同一平面的兩條直線平行;
③垂直于同一直線的兩條直線平行;   ④垂直于同一平面的兩個平面平行.
其中正確命題的序號( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=4,sin2A=sinC.
(1)若b=5,求△ABC的面積;
(2)若b>8,證明:角B為鈍角.

查看答案和解析>>

同步練習(xí)冊答案