A. | $\frac{20}{7}$ | B. | $\frac{18}{7}$ | C. | $\frac{16}{7}$ | D. | $\frac{2}{7}$ |
分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z=x+y的最大值.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
設(shè)z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點(diǎn)A時,直線y=-x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{3x+2y-6=0}\\{2x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2}{7}}\\{y=\frac{18}{7}}\end{array}\right.$,即A($\frac{2}{7}$,$\frac{18}{7}$),
代入目標(biāo)函數(shù)z=x+y得z=$\frac{2}{7}$+$\frac{18}{7}$=$\frac{20}{7}$.
即目標(biāo)函數(shù)z=x+y的最大值為$\frac{20}{7}$
故選:A
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{16}$ | C. | $\frac{7}{16}$ | D. | $\frac{11}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com