【題目】(本小題滿分12)

某商場準備在國慶節(jié)期間舉行促銷活動,根據(jù)市場調查,該商場決定從種服裝商品,種家電商品,種日用商品中,選出種商品進行促銷活動.

)試求選出的種商品中至多有一種是家電商品的概率;

)商場對選出的某商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎上將價格提高元,同時,若顧客購買該商品,則允許有次抽獎的機會,若中獎,則每次中獎都獲得數(shù)額為元的獎券.假設顧客每次抽獎時獲獎的概率都是,若使促銷方案對商場有利,則最少為多少元?

【答案】

最少為

【解析】

)選出種商品一共有種選法, …………2

選出的種商品中至多有一種是家電商品有. …………4

所以至多有一種是家電商品的概率為.…………6

)獎券總額是一隨機變量,設為,可能值為,,,.…………7

…………8

…………9

…………10

…………11


0









……………12

所以.……………13

所以,因此要使促銷方案對商場有利,則最少為. …………14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在多面體ABCDPE中,四邊形ABCD是直角梯形,,,平面平面,,,的余弦值為,,FBE中點,GPD中點.

1)求證:平面ABCD;

2)求平面BCE與平面ADE所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,.

1)求證:;

2)若,求平面和平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C,O為坐標原點,FC的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小正周期為4,其圖象關于直線對稱,給出下面四個結論:

①函數(shù)在區(qū)間上先增后減;②將函數(shù)的圖象向右平移個單位后得到的圖象關于原點對稱;③點是函數(shù)圖象的一個對稱中心;④函數(shù)上的最大值為1.其中正確的是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】3月12日,全國政協(xié)總工會界別小組會議上,人社部副部長湯濤在回應委員呼聲時表示無論是從養(yǎng)老金方面,還是從人力資源的合理配置來說,延遲退休是大勢所趨.不過,湯部長也表示,不少職工對于延遲退休有著不同的意見.某高校一社團就是否同意延遲退休的情況隨機采訪了200名市民,并進行了統(tǒng)計,得到如下的列聯(lián)表:

贊同延遲退休

不贊同延遲退休

合計

男性

80

20

100

女性

60

40

100

合計

140

60

200

(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認為對延遲退休的態(tài)度與性別有關;

(2)為了進一步征求對延遲退休的意見和建議,從抽取的200位市民中對不贊同的按照分層抽樣的方法抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少有1人為男性的概率.

附: ,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市美團外賣配送員底薪是每月1800元,設每月配送單數(shù)為X,若,每單提成3元,若,每單提成4元,若,每單提成4.5元,餓了么外賣配送員底薪是每月2100元,設每月配送單數(shù)為Y,若,每單提成3元,若,每單提成4元,小想在美團外賣和餓了么外賣之間選擇一份配送員工作,他隨機調查了美團外賣配送員甲和餓了么外賣配送員乙在2019年4月份(30天)的送餐量數(shù)據(jù),如下表:

表1:美團外賣配送員甲送餐量統(tǒng)計

日送餐量x(單)

13

14

16

17

18

20

天數(shù)

2

6

12

6

2

2

表2:餓了么外賣配送員乙送餐量統(tǒng)計

日送餐量x(單)

11

13

14

15

16

18

天數(shù)

4

5

12

3

5

1

(1)設美團外賣配送員月工資為,餓了么外賣配送員月工資為,當時,比較的大小關系

(2)將4月份的日送餐量的頻率視為日送餐量的概率

(ⅰ)計算外賣配送員甲和乙每日送餐量的數(shù)學期望E(X)和E(Y

(ⅱ)請利用所學的統(tǒng)計學知識為小王作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線E過點,過拋物線E上一點作兩直線PM,PN與圓C相切,且分別交拋物線EM、N兩點.

(1)求拋物線E的方程,并求其焦點坐標和準線方程;

(2)若直線MN的斜率為,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ+)=1

1)求直線l的直角坐標方程和曲線C的普通方程;

2)已知點M 2,0),若直線l與曲線C相交于PQ兩點,求的值.

查看答案和解析>>

同步練習冊答案