【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,兩條曲線交于兩點.

(1) 求直線與曲線交點的極坐標;

(2) 已知為曲線 (為參數(shù))上的一動點,設直線與曲線的交點為,求的面積的最小值.

【答案】(1)(2)

【解析】試題分析:

1把極坐標方程化為直角坐標方程為 ,解方程組可得直線與曲線交點為,化為極坐標為.(2)由(1)可得,故當點到直線的距離最小時, 的面積最小.故可設點,則點到直線的距離為 (其中),可得,從而得面積的最小值為

試題解析:

(1)由,得,

所以,

,得,

,

所以

,解得

所以直線與曲線交點的極坐標為

(2)由(1)知直線與曲線交點的直角坐標為,

所以

因此當的面積最小時,點到直線的距離也最小.

設點,則點到直線的距離為

(其中

故當時, 取得最小值,且

所以面積的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,23;藍色卡片兩張,標號分別為1,2.

(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;

(Ⅱ)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018屆寧夏育才中學高三上學期期末】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.

1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

由表中的數(shù)據(jù)顯示, 之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2分別為雙曲線的左、右焦點,若雙曲線左支上存在一點P,使得=8a,則雙曲線的離心率的取值范圍是__________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】扎比瓦卡是2018年俄羅斯世界杯足球賽吉祥物,該吉祥物以西伯利亞平原狼為藍本.扎比瓦卡,俄語意為“進球者”.某廠生產(chǎn)“扎比瓦卡”的固定成本為15000元,每生產(chǎn)一件“扎比瓦卡”需要增加投入20元,根據(jù)初步測算,每個銷售價格滿足函數(shù),其中x是“扎比瓦卡”的月產(chǎn)量(每月全部售完).

1)將利潤表示為月產(chǎn)量的函數(shù);

2)當月產(chǎn)量為何值時,該廠所獲利潤最大?最大利潤是多少?(總收益=總成本+利潤).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心坐標,直線被圓截得弦長為.

1)求圓的方程;

2)從圓外一點向圓引切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體 中, 分別為 的中點,點 是底面內一點,且 平面 ,則 的最大值是( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中, , 分別是 的中點, , 平面,且.

1)證明: 平面

2)若, 為等邊三角形,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,,且,數(shù)列滿足,對任意,都有.

1)求數(shù)列的通項公式;

2)令.若對任意的,不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案