【題目】已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,,對(duì)任意,都有.

1)求數(shù)列的通項(xiàng)公式;

2)令.若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.

【答案】1,;(2.

【解析】

1)利用,結(jié)合累乘法,求得數(shù)列的通項(xiàng)公式.根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,由此求得數(shù)列的通項(xiàng)公式.

2)利用錯(cuò)位相減求和法求得,利用差比較法證得是遞增數(shù)列,由此求得的取值范圍.化簡(jiǎn)不等式,得恒成立.構(gòu)造函數(shù),對(duì)進(jìn)行分類討論,結(jié)合二次函數(shù)的性質(zhì),求得的取值范圍.

1)∵

當(dāng)時(shí),

,即

,也滿足上式,故數(shù)列的通項(xiàng)公式

,知數(shù)列是等比數(shù)列,其首項(xiàng)為、公比為,

∴數(shù)列的通項(xiàng)公式

2)∵

由①②,得

,∴

恒正.

是遞增數(shù)列,

.

不等式,

,

恒成立.

設(shè),

當(dāng)時(shí),恒成立,則滿足條件;

當(dāng)時(shí),由二次函數(shù)性質(zhì)知不恒成立;

當(dāng)時(shí),由于對(duì)稱軸

上單調(diào)遞減,

恒成立,則滿足條件,

綜上所述,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,兩條曲線交于兩點(diǎn).

(1) 求直線與曲線交點(diǎn)的極坐標(biāo);

(2) 已知為曲線 (為參數(shù))上的一動(dòng)點(diǎn),設(shè)直線與曲線的交點(diǎn)為,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓,圓.

(1)若過點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;

(2)設(shè)動(dòng)圓同時(shí)平分圓的周長(zhǎng)、圓的周長(zhǎng).

①證明:動(dòng)圓圓心在一條定直線上運(yùn)動(dòng);

②動(dòng)圓是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.

(1)求||;

(2)已知點(diǎn)D是AB上一點(diǎn),滿足,點(diǎn)E是邊CB上一點(diǎn),滿足

①當(dāng)λ=時(shí),求;

②是否存在非零實(shí)數(shù)λ,使得?若存在,求出的λ值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)第一高摩天輪南昌之星摩天輪高度為,其中心距地面,半徑為,若某人從最低點(diǎn)處登上摩天輪,摩天輪勻速旋轉(zhuǎn),那么此人與地面的距離將隨時(shí)間變化,后達(dá)到最高點(diǎn),從登上摩天輪時(shí)開始計(jì)時(shí).

1)求出人與地面距離與時(shí)間的函數(shù)解析式;

2)從登上摩天輪到旋轉(zhuǎn)一周過程中,有多長(zhǎng)時(shí)間人與地面距離大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列五個(gè)判斷:

①某校高二一班和高二二班的人數(shù)分別是m,n,某次測(cè)試數(shù)學(xué)平均分分別為a,b,則這兩個(gè)班的數(shù)學(xué)平均分為;

②10名工人生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b

③設(shè)m,命題“若a>b,則”的逆否命題為假命題;

④命題p“方程表示橢圓”,命題q“的取值范圍為1<<4”,則p是q的充要條件;

⑤線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;

其中正確的個(gè)數(shù)有(  。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像上存在點(diǎn),函數(shù)的圖像上存在點(diǎn),關(guān)于原點(diǎn)對(duì)稱,則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點(diǎn)的等腰直角三角形.?dāng)M修建兩條小路AC,BD(路的寬度忽略不計(jì)),設(shè)∠BAD=,(,)

(1)當(dāng)cos時(shí),求小路AC的長(zhǎng)度;

(2)當(dāng)草坪ABCD的面積最大時(shí),求此時(shí)小路BD的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案