【題目】如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,,//,.

1)證明://平面BCE.

2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.

【答案】1)證明見(jiàn)解析(2

【解析】

1)根據(jù)線面垂直的性質(zhì)定理,可得DE//BF,然后根據(jù)勾股定理計(jì)算可得BFDE最后利用線面平行的判定定理,可得結(jié)果.

(2)利用建系的方法,可得平面ABF的一個(gè)法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.

1)因?yàn)?/span>DE⊥平面ABCD,所以DEAD

因?yàn)?/span>AD4,AE5,DE3,同理BF3,

DE⊥平面ABCD,BF⊥平面ABCD,

所以DE//BF,又BFDE,

所以平行四邊形BEDF,故DF//BE,

因?yàn)?/span>BE平面BCEDF平面BCE

所以DF//平面BCE;

2)建立如圖空間直角坐標(biāo)系,

D0,0,0),A4,0,0),

C04,0),F43,﹣3),

設(shè)平面CDF的法向量為,

,令x3,得

易知平面ABF的一個(gè)法向量為,

所以,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓C:(),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)C上.

(1)求橢圓C的方程和其“衛(wèi)星圓”方程;

(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線,使得,與橢圓C都只有一個(gè)交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在點(diǎn)處切線的斜率為4,求實(shí)數(shù)的值;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋內(nèi)有個(gè)不同的紅球,個(gè)不同的白球,

(1)從中任取個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?

(2)若取一個(gè)紅球記分,取一個(gè)白球記分,從中任取個(gè)球,使總分不少于分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,的面積為1,且橢圓的離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)點(diǎn)在橢圓上且位于第二象限,過(guò)點(diǎn)作直線,過(guò)點(diǎn)作直線,若直線的交點(diǎn)恰好也在橢圓上,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】臨近開(kāi)學(xué)季,某大學(xué)城附近的一款網(wǎng)紅書(shū)包銷(xiāo)售火爆,其成本是每件15元.經(jīng)多數(shù)商家銷(xiāo)售經(jīng)驗(yàn),這款書(shū)包在未來(lái)1個(gè)月(按30天計(jì)算)的日銷(xiāo)售量(個(gè))與時(shí)間(天)的關(guān)系如下表所示:

時(shí)間(/天)

1

4

7

11

28

日銷(xiāo)售量(/個(gè))

196

184

172

156

88

未來(lái)1個(gè)月內(nèi),前15天每天的價(jià)格(元/個(gè))與時(shí)間(天)的函數(shù)關(guān)系式為(且為整數(shù)),后15天每天的價(jià)格(元/個(gè))與時(shí)間(天)的函數(shù)關(guān)系式為(且為整數(shù)).

1)認(rèn)真分析表格中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)(個(gè))與(天)的關(guān)系式;

2)試預(yù)測(cè)未來(lái)1個(gè)月中哪一天的日銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?

3)在實(shí)際銷(xiāo)售的第1周(7天),商家決定每銷(xiāo)售1件商品就捐贈(zèng)元利潤(rùn)給該城區(qū)養(yǎng)老院.商家通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),這周中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間(天)的增大而增大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)EF分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).

求證:(1)直線平面EFG;

2)直線平面SDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱椎中,四邊形為菱形,,,,,分別為,中點(diǎn)..

1)求證:

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案