17.如圖所示,∠BAC=$\frac{2π}{3}$,圓M與AB,AC分別相切于點(diǎn)D,E,AD=1,點(diǎn)P是圓M及其內(nèi)部任意一點(diǎn),且$\overrightarrow{AP}=x\overrightarrow{AD}+y\overrightarrow{AE}$(x,y∈R),則x+y的取值范圍是( 。
A.$[1,4+2\sqrt{3}]$B.$[4-2\sqrt{3},4+2\sqrt{3}]$C.$[1,2+\sqrt{3}]$D.$[2-\sqrt{3},2+\sqrt{3}]$

分析 連接MA,MD,求出圓M的半徑MD和MA,得出AP的最值,根據(jù)等邊三角形的性質(zhì)即可得出x+y的最值.

解答 解:連接MA,MD,則∠MAD=$\frac{π}{3}$,MD⊥AD,
∵AD=1,∴MD=$\sqrt{3}$,MA=2,
∵點(diǎn)P是圓M及其內(nèi)部任意一點(diǎn),
∴2-$\sqrt{3}$≤AP≤2+$\sqrt{3}$,且當(dāng)A,P,M三點(diǎn)共線時(shí),x+y取得最值,
當(dāng)AP取得最大值時(shí),以AP為對(duì)角線,以AB,AC為鄰邊方向作平行四邊形AA1PB1,
則△APB1和△APA1是等邊三角形,∴AB1=AA1=AP=2+$\sqrt{3}$,
∴x=y=2+$\sqrt{3}$,
∴x+y的最大值為4+2$\sqrt{3}$,
同理可求出x+y的最小值為4-2$\sqrt{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了平面向量的幾何運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線的極坐標(biāo)方程是ρcosθ+ρsinθ-1=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,在曲線C:$\left\{\begin{array}{l}{x=-1+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))上求一點(diǎn),使它到直線的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正四棱錐P-ABCD的底面是邊長(zhǎng)為2的正方形,側(cè)棱的長(zhǎng)度均為$\sqrt{6}$,則該四棱錐的外接球體積為( 。
A.$\frac{3π}{2}$B.$\frac{4}{3}$πC.$\frac{9}{2}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖ABC-A1B1C1是直三棱柱,底面△ABC是等腰直角三角形,且AB=AC=4,直三棱柱的高等于4,線段B1C1的中點(diǎn)為D,線段BC的中點(diǎn)為E,線段CC1的中點(diǎn)為F.
(1)求異面直線AD、EF所成角的大;
(2)求三棱錐D-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≤1}\\{y≤2}\end{array}}\right.$則目標(biāo)函數(shù)z=-2x+y的最小值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)f-1(x)為$f(x)=\frac{2x}{x+1}$的反函數(shù),則f-1(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.給定數(shù)列{an},若滿足a1=a(a>0且a≠1),對(duì)于任意的n,m∈N*,都有an+m=an•am,則稱數(shù)列{an}為指數(shù)數(shù)列.
(1)已知數(shù)列{an},{bn}的通項(xiàng)公式分別為${a_n}=3•{2^{n-1}}$,${b_n}={3^n}$,試判斷{an},{bn}是不是指數(shù)數(shù)列(需說明理由);
(2)若數(shù)列{an}滿足:a1=2,a2=4,an+2=3an+1-2an,證明:{an}是指數(shù)數(shù)列;
(3)若數(shù)列{an}是指數(shù)數(shù)列,${a_1}=\frac{t+3}{t+4}$(t∈N*),證明:數(shù)列{an}中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知t>0,設(shè)函數(shù)f(x)=x3-$\frac{3(t+1)}{2}$x2+3tx+1.φ(x)=xex-m+2
(1)當(dāng)m=2時(shí),求φ(x)的極值點(diǎn);
(2)討論f(x)在區(qū)間(0,2)上的單調(diào)性;
(3)f(x)≤ϕ(x)對(duì)任意x∈[0,+∞)恒成立時(shí),m的最大值為1,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=ax+x2-xlna-b(a>1,b∈R),e是自然對(duì)數(shù)的底數(shù).若存在x1,x2∈[-1,1],使得|f(x1)-f(x2|≥e-1,則實(shí)數(shù)a的取值范圍是[e,+∞).(參考公式:(ax)′=axlna)

查看答案和解析>>

同步練習(xí)冊(cè)答案