已知圓C的方程是x2+y2-8x-2y+10=0,過點M(3,0)的最短弦所在的直線方程是( 。
A、x+y-3=0
B、x-y-3=0
C、2x-y-6=0
D、2x+y-6=0
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:由題意可得點M(3,0)在圓的內(nèi)部,故當(dāng)直線和CM垂直時,弦長最短,求出最短的弦所在直線的斜率,用點斜式求得過點M(3,0)的最短弦所在的直線方程.
解答: 解:圓x2+y2-8x-2y+10=0,即 (x-4)2+(y-1)2 =7,表示以C(4,1)為圓心,半徑等于
7
的圓,顯然點M(3,0)在圓的內(nèi)部,
故當(dāng)直線和CM垂直時,弦長最短,
故最短的弦所在直線的斜率為
-1
KCM
=
-1
1-0
4-3
=-1,故過點M(3,0)的最短弦所在的直線方程是y-0=-(x-3),即x+y-3=0,
故選:A.
點評:本題主要考查直線和圓相交的性質(zhì),點到直線的距離公式的應(yīng)用,用點斜式求直線的方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足2f(x)-f(-x)=x+1,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐DM如圖1所示,其三視圖如圖2所示,其中正視圖和側(cè)視圖都是直角三角形,俯視圖是矩形.

(1)若E是PD的中點,求證:AE⊥平面PCD;
(2)求此四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若O為△ABC所在平面內(nèi)一點,且滿足(
OC
-
OB
)•(
OB
+
OC
-2
OA
)=0,則△ABC的形狀為(  )
A、正三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B兩點分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點和上頂點,F(xiàn)是橢圓的右焦點,若
AB
BF
>0,則橢圓的離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
1
ax-1
+
1
2
(a>1).
(1)探究函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明;
(2)當(dāng)a=2時,求函數(shù)f(x)在[-2,-1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)滬杭高速公路全長166千米.假設(shè)某汽車從上海莘莊鎮(zhèn)進(jìn)入該高速公路后以不低于60千米/時且不高于120千米/時的時速勻速行駛到杭州,已知該汽車每小時的運輸成本y(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數(shù)為0.02;固定部分為220元.
(1)把全程運輸成本y(元)表示為速度v(千米/時)的函數(shù),并指出這個函數(shù)的定義域;
(2)汽車應(yīng)以多大速度行駛才能使全程運輸成本最小?最小運輸成本約為多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2 (x2+2x+a),g(x)=(
1
2
 -x2
(1)當(dāng)a=2時,若f(x)>g(x),求x的取值范圍;
(2)若f(x)>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且asinB=
3
bcosA.
(1)求A的大小;
(2)若a=3,sinC=2sinB,求b,c的值.

查看答案和解析>>

同步練習(xí)冊答案