分析 先求導,根據(jù)導數(shù)和函數(shù)的最值關系,求出最值,列出關于a,b的方程,解得即可.
解答 解:∵f(x)=x3-$\frac{3}{2}$ax2+b,a∈($\frac{2}{3}$,1),x∈[-1,1]
∴f′(x)=3x2-3ax=3x(x-a),
令f′(x)=0,解得x=0或x=a,
當f′(x)>0時,即-1≤x<0,或a<x<1,函數(shù)單調遞增,
當f′(x)<0時,即a<x≤1,函數(shù)單調遞增,
∵f(-1)=-1-$\frac{3}{2}$a+b,f(a)=-$\frac{1}{2}$a3+b,f(0)=b,f(1)=1-$\frac{3}{2}$a+b
∴f(-1)<f(a),f(0)>f(1),
∵f(x)最大值為1,最小值為-$\frac{\sqrt{6}}{2}$,
∴-1-$\frac{3}{2}$a+b=-$\frac{\sqrt{6}}{2}$,b=1,
解得a=$\frac{\sqrt{6}}{3}$,b=1,
∴f(x)=x3-$\frac{\sqrt{6}}{2}$x2+1
點評 本題考查了利用導數(shù)求函數(shù)在某一閉區(qū)間上的最值問題,關鍵是判斷端點值和極值的大小,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 與a,b均相交 | B. | 與a,b都不相交 | ||
C. | 至少與a,b中的一條相交 | D. | 至多與a,b中的一條相交 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com