已知
(1)若,求x的范圍;
(2)求的最大值以及此時(shí)x的值.
(1)(2),.
解析試題分析:(1)根據(jù)向量的數(shù)量積公式,化簡f(x)≥1得cos2x-cosx≤0,從而得到0≤cosx≤1.再由余弦函數(shù)的圖象與性質(zhì)解此不等式,即可求出x的范圍;
(2)由(1)得f(x)=sin2x+cosx,利用同角三角函數(shù)的關(guān)系化簡、配方得f(x)═,由此可得cosx=時(shí),f(x)的最大值為,根據(jù)余弦函數(shù)的圖象與性質(zhì),可得相應(yīng)x的值..
試題解析:解:(1)
,
(2)
考點(diǎn):1.平面向量數(shù)量積的運(yùn)算;2.正弦函數(shù)的定義域和值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,x∈,.
(1) 當(dāng)a=時(shí),求函數(shù)f(x)的最小值;
(2) 若函數(shù)的最小值為4,求實(shí)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),判斷在的單調(diào)性,并用定義證明;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)討論零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對任意的,存在唯一的,使;
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若不等式有解,求實(shí)數(shù)m的取值菹圍;
(3)證明:當(dāng)a=0時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/54/b/1px9r3.png" style="vertical-align:middle;" />的偶函數(shù).當(dāng)時(shí),若關(guān)于的方程有且只有7個(gè)不同實(shí)數(shù)根,則的值是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/91/6/opi5k1.png" style="vertical-align:middle;" />,且,,
當(dāng),且,時(shí)恒成立.
(1)判斷在上的單調(diào)性;
(2)解不等式;
(3)若對于所有,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,x∈[1,+∞).
(1)當(dāng)a=時(shí),求f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com