【題目】設(shè)函數(shù),.

1)若對(duì)任意,恒成立,求的取值范圍;

2,討論函數(shù)的單調(diào)性.

【答案】1;(2)見(jiàn)解析

【解析】

1)將對(duì)任意,恒成立,轉(zhuǎn)化為對(duì)任意, 恒成立,令,由函數(shù)在區(qū)間上單調(diào)遞減,只需證恒成立即可.

2)得到,求導(dǎo),再分, ,五種情況討論求解.

1)因?yàn)?/span>,即,

,

,

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞減,

所以恒成立,

在區(qū)間上恒成立,

.

2,

,

當(dāng)時(shí),,

,,遞增,,,遞減,

當(dāng)時(shí),,

,遞增,,,遞減,

當(dāng)時(shí),,的單調(diào)遞增區(qū)間為,

當(dāng)時(shí),,;,當(dāng)變化,,變化如下表

1

負(fù)

遞增

極大值

遞減

極小值

遞增

即單調(diào)增區(qū)間為,減區(qū)間為.

當(dāng)時(shí),,,當(dāng)變化,變化如下表

1

負(fù)

遞增

極大值

遞減

極小值

遞增

即單調(diào)增區(qū)間為,,減區(qū)間為.

綜上:當(dāng)時(shí),單調(diào)增區(qū)間為,減區(qū)間為

當(dāng)時(shí),單調(diào)增區(qū)間為,減區(qū)間為

當(dāng)時(shí),的單調(diào)遞增區(qū)間為,

當(dāng)時(shí),單調(diào)增區(qū)間為,,減區(qū)間為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù))

(1)判斷函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;

(2)若, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)某種型號(hào)的農(nóng)機(jī)具零配件,為了預(yù)測(cè)今年7月份該型號(hào)農(nóng)機(jī)具零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度1月份至6月份該型號(hào)農(nóng)機(jī)具零配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)(單位:元)和銷(xiāo)售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷(xiāo)售單價(jià)(元)

11.1

9.1

9.4

10.2

8.8

11.4

銷(xiāo)售量(千件)

2.5

3.1

3

2.8

3.2

2.4

1)根據(jù)16月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到0.01);

2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)農(nóng)機(jī)具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷(xiāo)售單價(jià),才能使該月利潤(rùn)達(dá)到最大?(計(jì)算結(jié)果精確到0.1

參考公式:回歸直線方程,

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工企業(yè)2018年年底投入100萬(wàn)元,購(gòu)入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬(wàn)元)

(1)用表示;

(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)大于1的自然數(shù),除了1和它本身外,不能被其他自然數(shù)整除,則稱(chēng)這個(gè)數(shù)為質(zhì)數(shù).質(zhì)數(shù)的個(gè)數(shù)是無(wú)窮的.設(shè)由所有質(zhì)數(shù)組成的無(wú)窮遞增數(shù)列的前項(xiàng)和為,等差數(shù)列1,3,5,7,…中所有不大于的項(xiàng)的和為

(Ⅰ)求;

(Ⅱ)判斷的大小,不用證明;

(Ⅲ)設(shè),求證:,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表為年至年某百貨零售企業(yè)的線下銷(xiāo)售額(單位:萬(wàn)元),其中年份代碼年份

年份代碼

線下銷(xiāo)售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)年該百貨零售企業(yè)的線下銷(xiāo)售額;

(2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂(lè)觀態(tài)度”和“持不樂(lè)觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)持樂(lè)觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程有且只有兩個(gè)解,則以下判斷正確的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則以下結(jié)論正確的是(

A.函數(shù)的單調(diào)減區(qū)間是

B.函數(shù)有且只有1個(gè)零點(diǎn)

C.存在正實(shí)數(shù),使得成立

D.對(duì)任意兩個(gè)正實(shí)數(shù),且,若

查看答案和解析>>

同步練習(xí)冊(cè)答案