己知a∈R,函數(shù)
(1)若a=1,求曲線在點(diǎn)(2,f (2))處的切線方程;
(2)若|a|>1,求在閉區(qū)間[0,|2a|]上的最小值.
(1) (2) 當(dāng)時(shí),函數(shù)最小值是;當(dāng)時(shí),函數(shù)最小值是.
解析試題分析:(1)由導(dǎo)數(shù)的幾何意義可知,曲線在點(diǎn)(2,f (2))處的導(dǎo)數(shù)值為切線的斜率. ,當(dāng)時(shí),
從而在處的切線方程是: (2)求函數(shù)在閉區(qū)間上的最值,先要根據(jù)導(dǎo)數(shù)研究函數(shù)單調(diào)性,確定其走勢(shì),再比較端點(diǎn)及極值點(diǎn)的函數(shù)值的大小確定最值. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8c/e/nijir1.png" style="vertical-align:middle;" />,所以①當(dāng)時(shí), 時(shí),遞增,時(shí),遞減,最小值是②當(dāng)時(shí), 時(shí),遞減,時(shí),遞增,所以最小值是.
試題解析:(1)當(dāng)時(shí),
1
所以 4
在處的切線方程是: ..6
(2)
.8
①當(dāng)時(shí),時(shí),遞增,時(shí),遞減
所以當(dāng) 時(shí),且,
時(shí),遞增,時(shí),遞減 ..10
所以最小值是
②當(dāng)時(shí),且,在時(shí),時(shí),遞減,時(shí),遞增,所以最小值是
綜上所述:當(dāng)時(shí),函數(shù)最小值是;
當(dāng)時(shí),函數(shù)最小值是 13
考點(diǎn):利用導(dǎo)數(shù)求切線方程,利用導(dǎo)數(shù)求函數(shù)最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng) 時(shí),求在處的切線方程;
(2)設(shè)函數(shù),
(。┤艉瘮(shù)有且僅有一個(gè)零點(diǎn)時(shí),求的值;
(ⅱ)在(。┑臈l件下,若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)的表達(dá)式;
⑵若,函數(shù)在上的最小值是2 ,求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的定義域是,其中常數(shù).
(1)若,求的過原點(diǎn)的切線方程.
(2)當(dāng)時(shí),求最大實(shí)數(shù),使不等式對(duì)恒成立.
(3)證明當(dāng)時(shí),對(duì)任何,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某工廠有一批貨物由海上從甲地運(yùn)往乙地,已知輪船的最大航行速度為60海里/小時(shí),甲地至乙地之間的海上航行距離為600海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其他費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)與輪船速度的平方成正比,比例系數(shù)為0.5,其余費(fèi)用為每小時(shí)1250元。
(1)把全程運(yùn)輸成本(元)表示為速度(海里/小時(shí))的函數(shù);
(2)為使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,.
(1)若,試判斷并用定義證明函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求函數(shù)的最大值的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)圖像上一點(diǎn)處的切線方程為(1)求的值;(2)若方程在區(qū)間內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍;(3)令如果的圖像與軸交于兩點(diǎn),的中點(diǎn)為,求證:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com