定義運(yùn)算a*b,a*b
a,a≤b
b,a>b
,例如1*2=1,已知函數(shù)f(x)=1*ax(0<a<1)且f(4)=
1
2014
,則f(2)=( 。
A、-1007
B、-1006
C、1007
D、
1
2014
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(4)=4*a4=a4=
1
2014
,從而f(2)=4*a2=a2,由此能求出結(jié)果.
解答: 解:∵a*b=
a,a≤b
b,a>b
,f(x)=1*ax(0<a<1)且f(4)=
1
2014

∴f(4)=1*a4=a4=
1
2014
,
∴f(2)=1*a2=a2=
a4
=
1
2014
=
1
2014

故選:D.
點(diǎn)評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要注意新定義的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列
3
,
7
11
,
15
,
19
,…那么3
11
是這個數(shù)列的第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ex與直線y=5-x交點(diǎn)的縱坐標(biāo)在區(qū)間(m,m+1)(m∈z)內(nèi),則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(
2
)=
1
3
,求cos(π-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,則下列選項(xiàng)中一定成立的是( 。
A、若a1>0,則a2015<0
B、若a2>0,則a2016<0
C、若a1>0,則S2015>0
D、若a2>0,則S2016>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直棱柱ABC-A′B′C′中,底面是邊長為3的等邊三角形,AA′=4,M為AA′的中點(diǎn),P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過棱CC′到M的最短路線長為
29
,設(shè)這條最短路線與CC′的交點(diǎn)為N.求:
(1)該三棱柱的側(cè)面展開圖的對角線長;
(2)PC與NC的長;
(3)三棱錐C-MNP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,已知AA1=8,AC=AB=5,BC=6,點(diǎn)A1在底面ABC的射影是線段BC的中點(diǎn)O,在側(cè)棱AA1上存在一點(diǎn)E,且OE⊥B1C.
(1)求證:OE⊥面BB1C1C;
(2)求平面A1B1C與平面B1C1C所成銳二面角的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC中,AB=AC,BC=4,∠BAC=120°,
BE
=3
EC
,若P是BC邊上的動點(diǎn),則
AP
AE
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,且橢圓C的短軸長為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P,M,N橢圓C上的三個動點(diǎn).
(i)若直線MN過點(diǎn)D(0,-
1
2
),且P點(diǎn)是橢圓C的上頂點(diǎn),求△PMN面積的最大值;
(ii)試探究:是否存在△PMN是以O(shè)為中心的等邊三角形,若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案