π
2
0
sin2
x
2
dx=
 
考點:定積分
專題:導數(shù)的綜合應用
分析:根據(jù)函數(shù)的積分公式即可得到結(jié)論.
解答: 解:
π
2
0
sin2
x
2
dx=
π
2
0
1
2
-
1
2
cosx
)dx=(
1
2
x
-
1
2
sinx)|
 
π
2
0
=
π
4
-
1
2
=
π-2
4
,
故答案為:
π-2
4
點評:本題主要考查函數(shù)積分的計算,要求熟練掌握常見函數(shù)的積分公式,比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列命題中正確的是( 。
A、若直線m∥平面α,直線n?α,則m∥n
B、若直線m⊥平面α,直線n?α,則m⊥n
C、若平面α∥平面β,直線m?α,直線n?β,則m∥n
D、若平面α⊥平面β,直線m?α,則m⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=alnx+x2
(1)討論f(x)的單調(diào)性,
(2)當a>0時,若對于任意x1,x2∈(0,+∞),都有|f(x1)-f(x2)|≥3|x1-x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+1(a∈R).
(1)若函數(shù)y=f(x)在區(qū)間(0,
2
3
)上遞增,在區(qū)間[
2
3
,+∞)遞減,求a的值;
(2)當x∈[0,1]時,設函數(shù)y=f(x)圖象上任意一點處的切線的傾斜角為θ,若給定常數(shù)a∈(
3
2
,+∞),求tanθ的取值范圍;
(3)在(1)的條件下,是否存在實數(shù)m,使得函數(shù)g(x)=x4-5x3+(2-m)x2+1(m∈R)的圖象與函數(shù)y=f(x)的圖象恰有三個交點.若存在,求實數(shù)m的取值范圍;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+
3
2
x,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=
an
2n-1
,求數(shù)列{bn}的前n項和Tn;
(3)令cn=
an
an+1
+
an+1
an
,證明:c1+c2+…+cn>2n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),周期為3,且x∈[0,1]時,f(x)=x2-x+2,求f(-2014)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an} 的首項a1=1前n項和Sn滿足Sn+1=Sn+an+1,n∈N*,數(shù)列{bn}的前n項和Tn=1-
1
3
bn
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)設Cn=an
bn
,
    ①求數(shù)列{cn}前n項和Pn;  
    ②證明:當且僅當n≥2時,cn+1<cn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

前不久,江蘇電視臺有一檔節(jié)目叫《最強大腦》,其中有一場記憶比賽有6位選手,其中4位選手從來沒有參加過記憶能力方面的培訓,2位選手曾經(jīng)參加過記憶能力方面的培訓.
(1)現(xiàn)從該6位選手中任選2位去參加比賽,求恰好選到1位曾經(jīng)參加過記憶能力方面培訓的選手的概率;
(2)為了在以后與歐洲選手的比賽中取得更好的成績,現(xiàn)準備從這6位選手中任選2位去參加這方面的培訓,培訓結(jié)束后,該小組沒有參加過這方面培訓的選手個數(shù)ξ是一個隨機變量,求隨機變量ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:sin4α+cos4α=1-2sin2αcos2α

查看答案和解析>>

同步練習冊答案