17.一條直線和兩條異面直線中的一條平行,則它和另一條的位置關(guān)系是( 。
A.異面B.平行C.相交D.相交或異面

分析 由空間中直線與直線的位置關(guān)系,結(jié)合已知中一條直線和兩條平行直線中的一條是異面直線,根據(jù)直線與直線位置關(guān)系的幾何特征,即可得到答案.

解答 解:∵一條直線和兩條平行直線中的一條是異面直線,
∴它和另一條直線不可能平行,
故它和另一條直線的位置關(guān)系是相交或異面,
故選D,

點評 本題考查的知識點是空間中直線與直線之間的位置關(guān)系,其中熟練掌握空間中直線與直線位置關(guān)系的定義及幾何特征是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列命題中:
①偶函數(shù)的圖象一定與y軸相交;
②奇函數(shù)的圖象一定過原點;
③若奇函數(shù)f(x)=a-$\frac{2}{{{2^x}+1}}$,則實數(shù)a=1;
④圖象過原點的奇函數(shù)必是單調(diào)函數(shù);
⑤函數(shù)y=2x-x2的零點個數(shù)為2;
⑥互為反函數(shù)的圖象關(guān)于直線y=x對稱.
上述命題中所有正確的命題序號是③⑥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,某工廠要設(shè)計一個三角形原料,其中AB=$\sqrt{3}$AC.
(1)若BC=2,求△ABC的面積的最大值;
(2)若△ABC的面積為1,問∠BAC=θ為何值時BC取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標系中xOy中,曲線E的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)寫出曲線E的普通方程和極坐標方程;
(2)若直線l與曲線E相交于點A、B兩點,且OA⊥OB,求證:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=lnx-x2與g(x)=(x-2)2-$\frac{1}{2x-4}$-m的圖象上存在關(guān)于(1,0)對稱的點,則實數(shù)m的取值范圍是( 。
A.(-∞,1-ln2)B.(-∞,1-ln2]C.(1-ln2,+∞)D.[1-ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)z是復(fù)數(shù),則下列命題中的假命題是( 。
A.若z是純虛數(shù),則z2<0B.若z是虛數(shù),則z2≥0
C.若z2≥0,則z是實數(shù)D.若z2<0,則z是虛數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)).在極坐標系(與直角坐標系xOy取相同的長度單位),且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=4sinθ.
(1)求圓C的直角坐標方程和直線l普通方程;
(2)設(shè)圓C與直線l交于點A,B,若點P的坐標為(3,0),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若數(shù)列{an}滿足${a_1}=\frac{1}{2}$,${a_n}=1-\frac{1}{{{a_{n-1}}}}$(n≥2且a∈N),則a2016等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.四邊形ABCD中,∠BAC=90°,BD+CD=2,則它的面積最大值等于$\frac{1+\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案