5.已知二次函數(shù)f(x)=ax2-2x+c的值域為[0,+∞),則$\frac{9}{a}+\frac{1}{c}$的最小值為6.

分析 由題意可得判別式為0,且拋物線開口向上,再由基本不等式即可得到所求最小值.

解答 解:二次函數(shù)f(x)=ax2-2x+c的值域為[0,+∞),
可得判別式△=4-4ac=0,
即有ac=1,且a>0,c>0,
可得$\frac{9}{a}+\frac{1}{c}$≥2$\sqrt{\frac{9}{ac}}$=2×3=6,
當(dāng)且僅當(dāng)$\frac{9}{a}$=$\frac{1}{c}$,即有c=$\frac{1}{3}$,a=3,取得最小值6.
故答案為:6.

點評 本題考查二次函數(shù)的值域問題,注意運用判別式為0,同時考查基本不等式的運用:求最值,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知共面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=3,$\overrightarrow$+$\overrightarrow{c}$=2$\overrightarrow{a}$,且|$\overrightarrow$|=|$\overrightarrow$-$\overrightarrow{c}$|.若對每一個確定的向量$\overrightarrow$,記|$\overrightarrow$-t$\overrightarrow{a}$|(t∈R)的最小值dmin,則當(dāng)$\overrightarrow$變化時,dmin的最大值為( 。
A.$\frac{4}{3}$B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知在等腰△AOB中,若|OA|=|OB|=5,且$|{\overrightarrow{OA}+\overrightarrow{OB}}|≥\frac{1}{2}|{\overrightarrow{AB}}|$,則$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍是( 。
A.[-15,25)B.[-15,15]C.[0,25)D.[0,15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在五面體ABCDEF中,面CDE和面ABF都為等邊三角形,面ABCD是等腰梯形,點P、Q分別是CD、AB的中點,F(xiàn)Q∥EP,PF=PQ,AB=2CD=2.
(1)求證:平面ABF⊥平面PQFE;
(2)若PQ與平面ABF所成的角為$\frac{π}{3}$,求三棱錐P-QDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.市政府為調(diào)查市民對本市某項調(diào)控措施的態(tài)度,隨機抽取了500名市民,統(tǒng)計了他們的月收入頻率分布和對該項措施的贊成人數(shù),統(tǒng)計結(jié)果如表所示:
 月收入(單位:百元)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
 頻數(shù) 25 100 150 155 5020
 贊成人數(shù) 10 70 120 150 35 15
(1)從月收入在[60,70)的20人中隨機抽取3人,求3人中至少2人對對該措施持贊成態(tài)度的概率;
(2)根據(jù)用樣本估計總體的思想,以樣本中事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在本市隨機采訪3人,用X表示3人中對該項措施持贊成態(tài)度的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.下列結(jié)論正確的是④.
①(x2-4x)(x+$\frac{1}{x}$)9的展開式中x2的系數(shù)為-210;
②在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有99%的把握認(rèn)為吸煙與患病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患肺病;
③已知命題“若函數(shù)f(x)=ex-mx在(0,+∞)上是增函數(shù),則m≤1”的逆否命題是“若m>1,則函數(shù)f(x)=ex-mx在(0,+∞)上是減函數(shù)”,是真命題;
④不等式ax2-(2a-3)x-1>0對?x>1恒成立的充要條件是0≤a≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在以A、B、C、D、E為頂點的五面體中,AD⊥平面ABC,AD∥BE,AC⊥CB,AB=2BE=4AD=4.
(1)O為AB的中點,F(xiàn)是線段BE上的一點,BE=4BF,證明:OF∥平面CDE;
(2)當(dāng)直線DE與平面CBE所成角的正切值為$\frac{2\sqrt{2}}{3}$時,求平面CDE與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.社區(qū)服務(wù)是綜合實踐活動課程的重要內(nèi)容.上海市教育部門在全市高中學(xué)生中隨機抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時間段[65,70),[70,75),[75,80),[80,85),[85,90)(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時間不少于80小時的學(xué)生人數(shù),并估計從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時間不少于80小時的概率;
(Ⅱ)從全市高中學(xué)生中任意選取3位學(xué)生,記ξ為3名學(xué)生中參加社區(qū)服務(wù)時間不少于80小時的人數(shù),試求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ和方差Dξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}+sin(x+\frac{π}{3}),\begin{array}{l}{\;}{x>0}\end{array}}\\{-{x^2}+cos(x+α),x<0}\end{array}}$,α∈[0,2π)是奇函數(shù),則α=$\frac{7π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案