7.已知全集U=R,集合A={x|x≥1},集合B={x|x≤0},則∁(A∪B)={x|0<x<1}.

分析 根據(jù)并集與補(bǔ)集的定義進(jìn)行計(jì)算即可.

解答 解:全集U=R,集合A={x|x≥1},集合B={x|x≤0},
∴A∪B={x|x≤0或x≥1},
∴∁(A∪B)={x|0<x<1}.
故答案為:{x|0<x<1}.

點(diǎn)評(píng) 本題考查了并集與補(bǔ)集的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=$\frac{1}{8}$,an=$\frac{{{a_{n-1}}}}{{1-2{a_{n-1}}}}$(n≥2,n∈N*),設(shè)bn=$\frac{1}{a_n}$,
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)Sn=|b1|+|b2|+…+|bn|(n∈N*),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{a}$=(1,-2),|$\overrightarrow$|=2$\sqrt{5}$,且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$=(2,-4),或(-2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合M={-1,1},N={x|x2-4<0},則下列結(jié)論正確的是( 。
A.N⊆MB.N∩M=∅C.M⊆ND.M∪N=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=kx+$\frac{2}{x^3}$-3(k∈R),f(ln6)=1,則f(ln$\frac{1}{6}$)=-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計(jì)算27${\;}^{-\frac{1}{3}}}$的結(jié)果是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)集合M={m|-3<m<2},N={n|-1<n≤3,n∈N},則M∩N={0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=sin3x+cos2x-cos2x-sinx的最大值等于(  )
A.$\frac{4}{27}$B.$\frac{5}{27}$C.$\frac{1}{3}$D.$\frac{16}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知偶函數(shù)f(x)在區(qū)間[0,+∞)單調(diào)遞增,則滿足f(2x-1)-f($\frac{1}{3}$)<0,則x取值范圍是( 。
A.($\frac{1}{3}$,$\frac{2}{3}$)B.[$\frac{1}{3}$,-$\frac{2}{3}$)C.($\frac{1}{2}$,$\frac{2}{3}$)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案