19.拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A,B是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=$\frac{π}{2}$.設(shè)線段AB的中點(diǎn)M在l上的投影為N,則$\frac{{|{AB}|}}{{|{MN}|}}$的最小值是( 。
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{2}$D.2

分析 設(shè)|AF|=a、|BF|=b,由拋物線定義結(jié)合梯形的中位線定理,得2|MN|=a+b.再由勾股定理得|AB|2=a2+b2,結(jié)合基本不等式求得|AB|的范圍,從而可得$\frac{{|{AB}|}}{{|{MN}|}}$的最小值.

解答 解:設(shè)|AF|=a,|BF|=b,A、B在準(zhǔn)線上的射影點(diǎn)分別為Q、P,連接AQ、BQ  
由拋物線定義,得AF|=|AQ|且|BF|=|BP|,
在梯形ABPQ中根據(jù)中位線定理,得2|MN|=|AQ|+|BP|=a+b.
由勾股定理得|AB|2=a2+b2,整理得:|AB|2=(a+b)2-2ab,
又∵ab≤($\frac{a+b}{2}$) 2,
∴(a+b)2-2ab≥(a+b)2-2×($\frac{a+b}{2}$) 2=$\frac{1}{2}$(a+b)2,
則|AB|≥$\frac{\sqrt{2}}{2}$(a+b).
∴$\frac{{|{AB}|}}{{|{MN}|}}$≥$\frac{\frac{\sqrt{2}}{2}(a+b)}{\frac{1}{2}(a+b)}$=$\sqrt{2}$,即$\frac{{|{AB}|}}{{|{MN}|}}$的最小值為$\sqrt{2}$.
故選C.

點(diǎn)評(píng) 本題考查拋物線的定義、簡(jiǎn)單幾何性質(zhì),基本不等式求最值,余弦定理的應(yīng)用等知識(shí),屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線y2=2px(p>0)上一點(diǎn)M (x0,4)到焦點(diǎn)F 的距離|MF|=$\frac{5}{4}$x0,則直線MF 的斜率kMF=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列{an}的公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知z為純虛數(shù),且(2+i)z=1+ai3(i為虛數(shù)單位),則復(fù)數(shù)a+z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.點(diǎn)P是雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$上任意一點(diǎn),則P到兩漸近線距離的乘積是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若數(shù)f(x)=lnx+x2+ax(a∈R)
(1)若函數(shù)f(x)的圖象在點(diǎn)P(1,f(1))處的切線與直線x+2y-1=0垂直,求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)M為棱長(zhǎng)是2$\sqrt{2}$的正方體ABCD-A1B1C1D1的內(nèi)切球O球面上的動(dòng)點(diǎn),點(diǎn)N為B1C1的中點(diǎn),若滿足DM⊥BN,則動(dòng)點(diǎn)M的軌跡的長(zhǎng)度為( 。
A.$\frac{{2\sqrt{5}π}}{5}$B.$\frac{{4\sqrt{5}π}}{5}$C.$\frac{{2\sqrt{10}π}}{5}$D.$\frac{{4\sqrt{10}π}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)m為實(shí)數(shù),函數(shù)f(x)=-e2x+2x+m.x∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)m≤1且x>0時(shí),e2x>2x+2mx+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知圓x2+y2+2mx+2y=0的半徑是1,則圓心坐標(biāo)為( 。
A.(0,-1)B.(1,-1)C.(-1,0)D.(-1,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案