18.將一個底面半徑為1,高為2的圓錐形工件切割成一個圓柱體,能切割出的圓柱最大體積為( 。
A.$\frac{π}{27}$B.$\frac{8π}{27}$C.$\frac{π}{3}$D.$\frac{2π}{9}$

分析 根據(jù)條件求出圓柱的體積,利用基本不等式研究函數(shù)的最值即可.

解答 解:設(shè)圓柱的半徑為r,高為x,體積為V,
則由題意可得$\frac{r}{1}=\frac{2-x}{2}$,
∴x=2-2r,
∴圓柱的體積為V(r)=πr2(2-2r)(0<r<1),
則V(r)≤π$(\frac{r+r+2-2r}{3})^{3}$=$\frac{8}{27}π$
∴圓柱的最大體積為$\frac{8}{27}π$,此時(shí)r=$\frac{2}{3}$,
故選:B.

點(diǎn)評 本題主要考查基本不等式在生活中的優(yōu)化問題,利用條件建立體積函數(shù)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.
  非一線 一線 總計(jì)
 愿生 45 20 65
 不愿生 13 22 35
 總計(jì) 58 42 100
附表:
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2=$\frac{100×(45×22-20×13)^{2}}{58×42×35×65}$≈9.616參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“生育意愿與城市級別無關(guān)”
C.有99%以上的把握認(rèn)為“生育意愿與城市級別有關(guān)”
D.有99%以上的把握認(rèn)為“生育意愿與城市級別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.四個變量y1、y2、y3、y4隨變量x變化的函數(shù)值如表:
x051015202530
y1 5 130 505 1130 20053130 4505 
y2 5 94.4781785.2 33733 6.37×105 1.2×107 2.28×108 
y3 5 30 55 80 105 130 155
y4 5 2.3107 1.4295 1.1407 1.0461 1.0151 1.005
關(guān)于x呈單調(diào)增加的指數(shù)型函數(shù)和線性函數(shù)變化的變量分別是(  )
A.y2、y1B.y2、y3C.y4、y3D.y1、y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直角梯形ABCD中,AB∥CD,AB⊥AD,AB=4,CD=6,AD=5,點(diǎn)E在梯形內(nèi),那么∠AEB為鈍角的概率為(  )
A.$\frac{2π}{25}$B.$\frac{4π}{25}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+a|-2a,其中a∈R.
(1)當(dāng)a=-2時(shí),求不等式f(x)≤2x+1的解集;
(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax+lnx.
(Ⅰ)若f(x)在區(qū)間(0,1)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)函數(shù)h(x)=-$\frac{1}{2}$x2-f(x)有兩個極值點(diǎn)x1、x2,且x1∈[$\frac{1}{2}$,1),求證:|h(x1)-h(x2)|<2-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=x(m+e-x)(其中e為自然對數(shù)的底數(shù)),曲線y=f(x)上存在不同的兩點(diǎn),使得曲線在這兩點(diǎn)處的切線都與y軸垂直,則實(shí)數(shù)m的取值范圍是(0,e-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知A(6,3),B(2,3),C(4,1)和D(5,m)四點(diǎn)在同一圓周上,求
(1)圓的方程;
(2)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓C:(x-3)2+(y-4)2=4,直線l過定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P,Q兩點(diǎn),求△CPQ的面積的最大值,并求此時(shí)直線l的方程.(其中點(diǎn)C是圓的圓心)

查看答案和解析>>

同步練習(xí)冊答案