【題目】已知正項數(shù)列的前n項和為,對于任意的,都有.
(1)求,;
(2)求數(shù)列的通項公式;
(3)令問是否存在正數(shù)m,使得對一切正整數(shù)n都成立?若存在,求出m的取值范圍;若不存在,請說明理由.
【答案】(1);;(2);(3)存在,
【解析】
(1)分別代入和,結合解方程可求得結果;
(2)利用得,兩式作差整理可得,從而證得數(shù)列為等差數(shù)列,由此可求得通項公式;
(3)由(2)可求得,將問題轉化為恒成立,通過求解不等式右側數(shù)列的單調性,可求得時取最小值,由此可得的取值范圍.
(1)當時,,又,;
當時,,即,解得:.
(2)由得:,
,
則,,
兩式作差得:,,
數(shù)列是以為首項,為公差的等差數(shù)列,.
(3)由(2)知:,,
,,
假設存在整數(shù),使得對一切正整數(shù)都成立,
設,,
則,
為遞增數(shù)列,,
由恒成立知:,
存在正實數(shù),使得對一切正整數(shù)都成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若,函數(shù)的極大值為,求實數(shù)的值;
(2)若對任意的在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,不正確的是( )
A.在中,若,則
B.在銳角中,不等式恒成立
C.在中,若,,則必是等邊三角形
D.在中,若,則必是等腰三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1:+=1(a>b>0)的右焦點F(1,0),右準線l:x=4.圓C2:x2+y2=b2.A、B為橢圓上不同的兩點,AB中點為M.
(1)求橢圓C1的方程;
(2)若直線AB過F點,直線OM交l于N點,求證:NF⊥AB;
(3)若直線AB與圓C2相切,求原點O到AB中垂線的最大距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在,使得成立,則稱為的不動點,已知函數(shù)
(1)當,時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有不動點,求的取值范圍;
(3)在(2)條件下,若圖象上的兩點的橫坐標是函數(shù)的不動點,且的中點在直線上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖:已知四棱錐P—ABCD的底面ABCD是平行四邊形,PA⊥面ABCD,M是AD的中點,N是PC的中點.
(1)求證:MN∥面PAB;
(2)若平面PMC⊥面PAD,求證:CM⊥AD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距640米,余下工程只需要建兩端橋墩之間的橋面和橋墩,經預測,一個橋墩的工程費用為256萬元,距離為米的相鄰兩墩之間的橋面工程費用為萬元.假設橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,設需要新建個橋墩,記余下工程的費用為萬元.
(1)試寫出關于的函數(shù)關系式;(注意:)
(2)需新建多少個橋墩才能使最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有Sn=an+n-3成立.
(1)求證:存在實數(shù)λ使得數(shù)列{an+λ}為等比數(shù)列;
(2)求數(shù)列{nan}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com