【題目】已知四棱柱的底面是邊長為的菱形,且,平面,,于點(diǎn),點(diǎn)是的中點(diǎn).
(1)求證:平面;
(2)求平面和平面所成銳二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)取中點(diǎn)為,求證四邊形為平行四邊形,即可由線線平行推證線面平行;
(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,通過求解兩平面法向量之間夾角的余弦值,從而求得二面角夾角的余弦值.
(1)證明:∵,,∴是中點(diǎn),
取中點(diǎn),連,,如下圖所示:
則在菱形中,,//
∵,//,∴,//,
∴四邊形為平行四邊形,∴//,
又,//,∴四邊形為平行四邊形,
∴//,∴//,
又平面,平面,
∴//平面.即證.
(2)以為原點(diǎn),以分別為建立如圖所示的空間的直角坐標(biāo)系.
因?yàn)橐阎撍睦庵鶠橹彼睦庵?/span>,,
所以為等邊三角形.
因?yàn)?/span>,所以點(diǎn)是的中點(diǎn).
故點(diǎn),,,,
,,.
設(shè)平面的法向量為,,.
由得
取,得,,
故.
∵,,,
∴,∴是平面的法向量,
設(shè)平面和平面所成銳角為,
則.
即平面和平面所成銳角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線:=0(a>0),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系;
(1)求曲線,的極坐標(biāo)方程;
(2)已知極坐標(biāo)方程為=的直線與曲線,分別相交于P,Q兩點(diǎn)(均異于原點(diǎn)O),若|PQ|=﹣1,求實(shí)數(shù)a的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)同時(shí)滿足:①對于定義域上的任意,恒有;②對于定義域上的任意,當(dāng)時(shí),恒有,則稱函數(shù)為“理想函數(shù)”.給出下列四個(gè)函數(shù)中:① ; ②; ③; ④ ,能被稱為“理想函數(shù)”的有_____(請將所有正確命題的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有,,,四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎(jiǎng).在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎(jiǎng)情況預(yù)測如下:
甲說:“、同時(shí)獲獎(jiǎng)”;
乙說:“、不可能同時(shí)獲獎(jiǎng)”;
丙說:“獲獎(jiǎng)”;
丁說:“、至少一件獲獎(jiǎng)”.
如果以上四位同學(xué)中有且只有二位同學(xué)的預(yù)測是正確的,則獲獎(jiǎng)的作品是( )
A. 作品與作品 B. 作品與作品 C. 作品與作品 D. 作品與作品
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分?jǐn)?shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計(jì) |
(2)在上述樣本中,學(xué)校從成績?yōu)?/span>的學(xué)生中隨機(jī)抽取人進(jìn)行學(xué)習(xí)交流,求這人來自同一個(gè)班級的概率.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(1)討論函數(shù)的單凋性;
(2)若存在使得對任意的不等式(其中e為自然對數(shù)的底數(shù))都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的標(biāo)準(zhǔn)方程是.
(1)求它的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)直線過已知拋物線的焦點(diǎn)且傾斜角為45°,且與拋物線的交點(diǎn)為,求的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com