1.已知數(shù)列{an}對(duì)任意的n∈N*都有an+1=an-2an+1an,若${a_1}=\frac{1}{2}$,則a8=$\frac{1}{16}$.

分析 由an+1=an-2an+1an得$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=2$,利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:由an+1=an-2an+1an得$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=2$,
故數(shù)列$\{\frac{1}{a_n}\}$是$\frac{1}{a_1}=2$,公差d=2的等差數(shù)列,
$\frac{1}{a_n}=2+2(n-1)=2n$,
${a_8}=\frac{1}{16}$.
故答案為:$\frac{1}{16}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式\取倒數(shù)法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=sinx+$\sqrt{3}$cosx+2,x∈[0,2π],且關(guān)于x的方程f(x)=m有兩個(gè)不等實(shí)數(shù)根α,β,則sin(α+β)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{(sin\frac{x}{2}+cos\frac{x}{2})^{2}-1}{co{s}^{2}\frac{x}{2}-si{n}^{2}\frac{x}{2}}$,函數(shù)y=f(x)-$\sqrt{3}$在(0,+∞)上的零點(diǎn)按從小到大的順序構(gòu)成數(shù)列{an}(n∈N*)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{\frac{3}{π}{a}_{n}}{(4{n}^{2}-1)(3n-2)}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=xlnx-aex(e為自然對(duì)數(shù)的底數(shù))有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.$({0,\frac{1}{e}})$B.(0,e)C.$({\frac{1}{e},e})$D.(-∞,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.閱讀圖的程序框圖,運(yùn)行相應(yīng)的程序,當(dāng)輸入x的值為-36時(shí),輸出x的值為(  )
A.0B.1C.3D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義[x]表示不超過的最大整數(shù),如[2]=2,[2,2]=2,執(zhí)行如圖所示的程序框圖,則輸出S=( 。
A.1991B.2000C.2007D.2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在直角三角形△ABC中,$C=\frac{π}{2}$,$|{\overrightarrow{AC}}|=3$,對(duì)平面內(nèi)的任意一點(diǎn)M,平面內(nèi)有一點(diǎn)D使得$3\overrightarrow{MD}=\overrightarrow{MB}+2\overrightarrow{MA}$,則$\overrightarrow{CD}•\overrightarrow{CA}$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x,y為正實(shí)數(shù),則$\frac{2x}{x+2y}+\frac{x+y}{x}$的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{5}$=1的右焦點(diǎn)與拋物線y2=12x的焦點(diǎn)重合,則該雙曲線的焦點(diǎn)到其漸近線的距離等于( 。
A.$\sqrt{5}$B.3C.5D.4$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案