7.已知函數(shù)f(x)=|x-a|-|x-4|(x∈R,a∈R)的值域?yàn)閇-3,3].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若存在x0∈R,使得f(x0)≤2m-m2,求實(shí)數(shù)m的取值范圍.

分析 (Ⅰ)問題轉(zhuǎn)化為:|a-4|=3,解出即可;
(Ⅱ)求出f(x)的最小值,得到-3≤2m-m2,解出即可.

解答 解:(Ⅰ)對于任意x∈R,
f(x)=|x-a|-|x-4|∈[-|a-4|,|a-4|],
可知|a-4|=3,解得:a=1或a=7;
(Ⅱ)依題意有-3≤2m-m2
即m2-2m-3≤0,
解得:m∈[-1,3].

點(diǎn)評 本題考查了解絕對值不等式問題,考查二次不等式的解法,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線$y=\frac{π}{4}$與函數(shù)f(x)=tanωx(ω>0)圖象相交的相鄰兩點(diǎn)間距離為$\frac{π}{4}$,則$f(\frac{π}{4})$的值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若角α的終邊與角$\frac{π}{6}$的終邊關(guān)于直線y=x對稱,且α∈(-4π,-2π),則α=-$\frac{11π}{3}$,-$\frac{5π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若2${\;}^{{a}_{2}}$•2${\;}^{{a}_{8}}$=256,則S9的值為( 。
A.64B.36C.72D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,角A,B,C所對應(yīng)的邊長分別為a,b,c,面積為S,若S+a2=(b+c)2,則tanA=( 。
A.$\frac{8}{15}$B.-$\frac{8}{15}$C.$\frac{15}{17}$D.-$\frac{15}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)全集U=R,集合A={x|(x+1)(x-3)<0},B={x|x-1≥0},則圖中陰影部分所表示的集合為( 。
A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤{e}^{3}}\\{-x+{e}^{3}+3,x>{e}^{3}}\end{array}\right.$,存在x1<x2<x3,f(x1)=f(x2)=f(x3),則$\frac{f({x}_{3})}{{x}_{2}}$的最大值為$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$當(dāng)1<a<2時(shí),關(guān)于x的方程f[f(x)]=a實(shí)數(shù)解的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2cos($\frac{π}{2}$-ωx)+2sin($\frac{π}{3}$-ωx)(ω>0,x∈R),若f$(\frac{π}{6})$+f$(\frac{π}{2})$=0,且f(x)在區(qū)間$(\frac{π}{6},\frac{π}{2})$上遞減.
(1)求f(0)的值;     
(2)求ω;
(3)解不等式f(x)≥1.

查看答案和解析>>

同步練習(xí)冊答案