19.在四棱錐P-ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G為PC的中點(diǎn),PA=AD=2,BC=DE,AB=3,CD=2$\sqrt{3}$,F(xiàn),M分別為BC,EG上一點(diǎn),且AF∥CD.
(1)求$\frac{ME}{MG}$的值,使得CM∥平面AFG;
(2)過(guò)點(diǎn)E作平面PCD的垂線(xiàn),垂足為H,求四棱錐H-ABCD的體積.

分析 (1)由題意求出∠BAC的值,再由余弦定理可得BC,又BC=DE,則DE值可得,當(dāng)$\frac{ME}{MG}=\frac{DE}{DA}=\frac{\sqrt{13}}{2}$時(shí),AG∥DM,又AF∥CD,AF∩AG=A,則平面CDM∥平面AFG,CM?平面CDM,可得CM∥平面AFG;
(2)過(guò)E作EH⊥PD,垂足為H,則△APD∽△EHD,由PA=AD=2,得△APD為等腰直角三角形,則△EHD也為等腰直角三角形,結(jié)合已知條件,可得CD⊥平面PAE,則EH⊥平面PCD,過(guò)H作DE的垂線(xiàn),垂足為O,則HO⊥底面ABCE,可得HO的值,進(jìn)一步求出四邊形ABCD的面積,則四棱錐H-ABCD的體積可求.

解答 解:(1)在Rt△ADC中,∠ADC為直角,
tan∠CAD=$\frac{2\sqrt{3}}{2}=\sqrt{3}$,則∠CAD=60°,
又AC平分∠BAD,∴∠BAC=60°,
∵AB=3,AC=4,
∴由余弦定理可得BC=$\sqrt{13}$,則DE=$\sqrt{13}$.
當(dāng)$\frac{ME}{MG}=\frac{DE}{DA}=\frac{\sqrt{13}}{2}$時(shí),AG∥DM,
又AF∥CD,AF∩AG=A,∴平面CDM∥平面AFG.
∵CM?平面CDM,∴CM∥平面AFG;
(2)過(guò)E作EH⊥PD,垂足為H,則△APD∽△EHD,
由PA=AD=2,得△APD為等腰直角三角形,則△EHD也為等腰直角三角形,
∵PA⊥底面ABCE,∴AP⊥CD,
∵CD⊥AE,PA∩AE=A,
∴CD⊥平面PAE,則CD⊥EH,
則EH⊥平面PCD,
過(guò)H作DE的垂線(xiàn),垂足為O,則HO⊥底面ABCE,
可得HO=$\frac{1}{2}DE=\frac{\sqrt{13}}{2}$.
∵四邊形ABCD的面積為$\frac{1}{2}×2×2\sqrt{3}+\frac{1}{2}×3×4×sin60°=5\sqrt{3}$.
∴${V}_{H-ABCD}=\frac{1}{3}×5\sqrt{3}×\frac{\sqrt{13}}{2}=\frac{5\sqrt{39}}{6}$.

點(diǎn)評(píng) 本題考查了線(xiàn)面垂直的判定,考查了棱錐的體積,考查了空間想象能力以及計(jì)算能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.己知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,且$\frac{sinA-sinB}{sinC}$=$\frac{c-b}{2+b}$.則△ABC面積的最大值$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令bn=lna3n+1,n=1,2,…,設(shè)數(shù)列{bn}的前n項(xiàng)和Tn.若$\frac{1}{T_1}+\frac{1}{T_2}+…+\frac{1}{T_n}<λ$對(duì)n∈N*恒成立求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若將函數(shù)$y=2sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,則平移后圖象的對(duì)稱(chēng)軸方程為( 。
A.$x=\frac{kπ}{2}+\frac{π}{12}({k∈Z})$B.$x=\frac{kπ}{2}+\frac{π}{8}({k∈Z})$C.$x=kπ+\frac{π}{12}({k∈Z})$D.$x=kπ+\frac{π}{8}({k∈Z})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是$\left\{\begin{array}{l}x=2+2cosϕ\\ y=2sinϕ\end{array}\right.$(ϕ為參數(shù))和$\left\{\begin{array}{l}x=cosβ\\ y=1+sinβ\end{array}\right.$(β為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線(xiàn)OM:θ=α與圓C1的交點(diǎn)分別為O、P,與圓C2的交點(diǎn)分別為O、Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知曲線(xiàn)C1的參數(shù)方程為:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為:ρ=4sin(θ+$\frac{π}{3}$),直線(xiàn)l的極坐標(biāo)方程為θ=$\frac{π}{6}$.
(1)求曲線(xiàn)C1的普通方程與曲線(xiàn)C2的直角坐標(biāo)方程;
(2)若曲線(xiàn)C1和曲線(xiàn)C2與直線(xiàn)l分別交于非坐標(biāo)原點(diǎn)的A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.點(diǎn)M的直角坐標(biāo)(2$\sqrt{3}$,-2)化成極坐標(biāo)為(  )
A.(4,$\frac{5π}{6}$)B.(4,$\frac{2π}{3}$)C.(4,$\frac{5π}{3}$)D.(4,$\frac{11π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)$f(x)=-{log_2}({{x^2}-2ax+3})在(-∞,1)$上是增函數(shù),則a的取值范圍[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.關(guān)于直線(xiàn)m,n和平面α,β,有以下四個(gè)命題:
①若m∥α,n∥β,α∥β,則m∥n;    
②若m∥n,m?α,n⊥β,則α⊥β;
③若α∩β=m,m∥n,則n∥α且n∥β;
④若m⊥n,α∩β=m,則n⊥α或n⊥β.
其中正確命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案