7.若將函數(shù)$y=2sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,則平移后圖象的對(duì)稱軸方程為( 。
A.$x=\frac{kπ}{2}+\frac{π}{12}({k∈Z})$B.$x=\frac{kπ}{2}+\frac{π}{8}({k∈Z})$C.$x=kπ+\frac{π}{12}({k∈Z})$D.$x=kπ+\frac{π}{8}({k∈Z})$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

解答 解:將函數(shù)$y=2sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,
可得y=2sin[2(x+$\frac{π}{12}$)+$\frac{π}{6}$]=2sin(2x+$\frac{π}{3}$)的圖象,
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,故平移后圖象的對(duì)稱軸方程得x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列說(shuō)法正確的個(gè)數(shù)是(  )
(1)若p∧q為假命題,則p,q均為假命題
(2)已知直線α,β,平面α,β,且a⊥α,b?β,則“a⊥b”是“α∥β”的必要不充分條件
(3)命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b”
(4)命題“?x0∈(0,+∞),使lnx0=x0-2”的否定是“?x∈(0,+∞),lnx≠x-2”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,a=5,B=45°,C=105°,解三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合$A=\{x|x<2\},B=\{x|\frac{x}{x-1}<1\},R$為實(shí)數(shù)集,則集合A∩(∁RB)=(  )
A.RB.(-∞,2)C.(1,2)D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.拋物線y=$\frac{1}{4}$x2的準(zhǔn)線方程是(  )
A.y=-1B.y=1C.x=-$\frac{1}{16}$D.x=$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=lnx-x2與g(x)=(x-2)2-$\frac{1}{2x-4}$-m的圖象上存在關(guān)于(1,0)對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,1-ln2)B.(-∞,1-ln2]C.(1-ln2,+∞)D.[1-ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在四棱錐P-ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G為PC的中點(diǎn),PA=AD=2,BC=DE,AB=3,CD=2$\sqrt{3}$,F(xiàn),M分別為BC,EG上一點(diǎn),且AF∥CD.
(1)求$\frac{ME}{MG}$的值,使得CM∥平面AFG;
(2)過(guò)點(diǎn)E作平面PCD的垂線,垂足為H,求四棱錐H-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算:$\sqrt{2}-1≈0.414,\sqrt{3}-\sqrt{2}$≈0.318;∴$\sqrt{2}-1>\sqrt{3}-\sqrt{2}$;又計(jì)算:$\sqrt{5}-2≈0.236,\sqrt{6}-\sqrt{5}≈0.213,\sqrt{7}-\sqrt{6}$≈0.196,∴$\sqrt{5}-2>\sqrt{6}-\sqrt{5}$,$\sqrt{6}-\sqrt{5}>\sqrt{7}-\sqrt{6}$.
(1)分析以上結(jié)論,試寫(xiě)出一個(gè)一般性的命題.
(2)判斷該命題的真假,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=4cos($\frac{π}{3}$-ωx)cosωx-1(ω>0)圖象的相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案