分析 求出函數(shù)f(x)的導數(shù),可得f(x)在[-2,-$\frac{1}{3}$]上遞減,計算即可得到所求最大值.
解答 解:函數(shù)$f(x)=-x+\frac{1}{x}$的導數(shù)為
f′(x)=-1-$\frac{1}{{x}^{2}}$,
在$[-2,-\frac{1}{3}]$上f′(x)<0,可得f(x)在[-2,-$\frac{1}{3}$]上遞減,
可得f(x)的最大值為f(-2)=2-$\frac{1}{2}$=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.
點評 本題考查函數(shù)的最值的求法,注意運用導數(shù)判斷函數(shù)的單調性,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2+(y-1)2=4 | B. | x2+(y-2)2=4 | C. | x2+(y-3)2=4 | D. | x2+(y-4)2=4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-4)∪(2,+∞) | B. | (-∞,-4)∪(1,+∞) | C. | (-4,2) | D. | [-4,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com