如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為AB的半圓形空地,O為圓心,C為圓周上一點,CD⊥AB于D,△ACD內(nèi)為一水池,△ACD外栽種花草,若AB=100米,∠CAB=θ,y=AC+CD.
(1)試用θ表示y;
(2)求y的最大值.

解:(1)連接CB,則AC⊥CB,
又AB=100,∠CAB=θ,∴AC=ABcosθ=100cosθ.
又CD⊥AB,∴CD=ACsinθ=100sinθcosθ.
∴y=100(1+sinθ)cosθ,
(2)y′=[100(1+sinθ)cosθ]′
=[100cosθ+50sin2θ]′
=100(-sinθ+cos2θ).
由y′=0得sinθ=或sinθ=-1(舍去).
∴θ=30°.
當(dāng)0°<θ<30°時,y′>0,則y在(0,30°)遞增.
當(dāng)30°<θ<90°時,y′<0,則y在(30°,90°)遞減.
∴當(dāng)θ=30°時函數(shù)取得最大值ymax=100(1+sin30°)cos30°=75
分析:(1)連接CB,則AC⊥CB,求出AC=ABcosθ=100cosθ.然后求出函數(shù)的解析式.
(2)求出函數(shù)的導(dǎo)數(shù),通過導(dǎo)數(shù)為0,求出θ=30°.通過當(dāng)0°<θ<30°時,當(dāng)30°<θ<90°時,判斷函數(shù)的單調(diào)性,說明θ=30°時函數(shù)取得最大值,求解即可.
點評:本題考查三角函數(shù)的解析式的求法,函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的最大值的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余地方種花.若BC=20米,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用θ表示S1和S2
(2)當(dāng)θ變化時,求“規(guī)劃合理度”取得最小值時的角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC的內(nèi)接正方形PQRS為一水池,△ABC外的地方種草,其余地方種花.若BC=a,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用a,θ表示S1和S2
(2)若a為定值,當(dāng)θ為何值時,“規(guī)劃合理度”最?并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為AB的半圓形空地,點C在半圓弧上,半圓內(nèi)△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS內(nèi)部為一水池,其余地方種花,若AB=2a,∠CAB=θ,設(shè)△ABC的面積為S1,正方形PQRS的邊長為x,面積為S2,將比值
S1
S2
稱為“規(guī)劃合理度”.
(1)求證:x=
2asin2θ
2+sin2θ

(2)當(dāng)a為定值,θ變化是,求“規(guī)劃合理度”的最小值及此時角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為AB的半圓形空地,O為圓心,C為圓周上一點,CD⊥AB于D,△ACD內(nèi)為一水池,△ACD外栽種花草,若AB=100米,∠CAB=θ,y=AC+CD.
(1)試用θ表示y;
(2)求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余地方種花.若BC=a,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用a,θ表示S1和S2
(2)(理)當(dāng)a為定值,θ變化時,求“規(guī)劃合理度”取得最小值時的角θ的大。
(3)(文)當(dāng)a為定值,θ=150時,求“規(guī)劃合理度”的值.

查看答案和解析>>

同步練習(xí)冊答案