18.已知圓O:x2+y2=1,點P為直線x-2y-3=0上一動點,過點P向圓O引兩條切線PA,PB,A、B為切點,則直線AB經(jīng)過定點( 。
A.(2,0)B.(3,0)C.($\frac{1}{2}$,-1)D.($\frac{1}{3}$,-$\frac{2}{3}$)

分析 根據(jù)題意設(shè)P的坐標(biāo)為P(2m+3,m),由切線的性質(zhì)得點A、B在以O(shè)P為直徑的圓C上,求出圓C的方程,將兩個圓的方程相減求出公共弦AB所在的直線方程,再求出直線AB過的定點坐標(biāo).

解答 解:因為P是直線x-2y-3=0的任一點,所以設(shè)P(2m+3,m),
因為圓x2+y2=1的兩條切線PA、PB,切點分別為A、B,
所以O(shè)A⊥PA,OB⊥PB,
則點A、B在以O(shè)P為直徑的圓上,即AB是圓O和圓C的公共弦,
則圓心C的坐標(biāo)是(m+$\frac{3}{2}$,$\frac{m}{2}$),且半徑的平方是r2=$\frac{(2m+3)^{2}+{m}^{2}}{4}$,
所以圓C的方程是(x-m-$\frac{3}{2}$)2+(y-$\frac{m}{2}$)2=$\frac{(2m+3)^{2}+{m}^{2}}{4}$,①
又x2+y2=1,②,
②-①得,(2m+3)x+my-1=0,即公共弦AB所在的直線方程是:(2m+3)x+my-1=0,
即m(2x+y)+(3x-1)=0,
由$\left\{\begin{array}{l}{3x-1=0}\\{2x+y=0}\end{array}\right.$得x=$\frac{1}{3}$,y=-$\frac{2}{3}$,
所以直線AB恒過定點($\frac{1}{3}$,-$\frac{2}{3}$),
故選D.

點評 本題考查了直線和圓的位置關(guān)系,圓和圓的位置關(guān)系,圓的切線性質(zhì),以及直線過定點問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正方形ABCD的邊長為1,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{c}$,則|$\overrightarrow{a}+\overrightarrow+\overrightarrow{c}$|等于(  )
A.1B.$\sqrt{2}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四邊形ABCD是邊長為1的正方形,ED⊥平面ABCD,F(xiàn)B⊥平面ABCD,且ED=FB=1,M為BC的中點,N為AF的中點.
(Ⅰ)求證:AF⊥EC;
(Ⅱ)求證:MN⊥平面AEF;
(Ⅲ)求二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.橢圓兩焦點為F1(-4,0),F(xiàn)2(4,0),P在橢圓上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,△PF1F2的面積為9,則該橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)z滿足z(4+i)=3+i,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax-$\frac{x}$-2lnx,對任意實數(shù)x>0,都有f(x)=-f($\frac{1}{x}$)成立.
(1)求函數(shù)y=f(ex)所有零點之和;
(2)對任意實數(shù)x≥1,函數(shù)f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線l與橢圓C的極坐標(biāo)方程分別為ρcosθ+2ρsinθ+3$\sqrt{2}$=0,ρ2=$\frac{4}{co{s}^{2}θ+4si{n}^{2}θ}$
(Ⅰ)求直線l與橢圓C的直角坐標(biāo)方程;
(Ⅱ)若P是直線l上的動點,Q為橢圓C上的動點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y<0}\\{x-y<0}\\{x+2>0}\end{array}\right.$,則$\frac{y+1}{x}$的取值范圍為(  )
A.(-$\frac{3}{2}$,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$]C.(-$\frac{3}{2}$,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系中,曲線${C_1}:\left\{\begin{array}{l}x=2+2cosα\\ y=sinα\end{array}\right.$(α為參數(shù))經(jīng)伸縮變換$\left\{\begin{array}{l}{x^'}=\frac{x}{2}\\{y^'}=y\end{array}\right.$后的曲線為C2,以坐標(biāo)原點O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C2的極坐標(biāo)方程;
(2)A,B是曲線C2上兩點,且$∠AOB=\frac{π}{3}$,求|OA|+|OB|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案