15.已知圓C:(x-3)2+(y-3)2=4及點A(1,1),M為圓C上的任意點N在線段MA的延長線上,且$\overrightarrow{MA}$=2$\overrightarrow{AN}$.
(1)求點N的軌跡方程;
(2)求|$\overrightarrow{AM}$+$\overrightarrow{AN}$|的最大值.

分析 (1)設出動點的坐標,利用向量條件確定動點坐標之間的關系,利用M為圓C上任意一點,即可求得結論;
(2)由(1)可得兩個圓的圓心在直線y=x上,|$\overrightarrow{AM}$+$\overrightarrow{AN}$|的最大值為|OC|+2-1,即可求出求|$\overrightarrow{AM}$+$\overrightarrow{AN}$|的最大值.

解答 解:(1)設N(x,y),M(x0,y0),則
由$\overrightarrow{MA}$=2$\overrightarrow{AN}$得(1-x0,1-y0)=2(x-1,y-1),
∴1-x0=2x-2,1-y0=2y-2,即x0=3-2x,y0=3-2y,
∵M為圓C上任意一點
∴(x0-3)2+(y0-3)2=4,
∴(3-2x-3)2+(3-2y-3)2=4,
∴x2+y2=1.
即點N的軌跡方程是x2+y2=1;
(2)由(1)可得兩個圓的圓心在直線y=x上,
∴|$\overrightarrow{AM}$+$\overrightarrow{AN}$|的最大值為|OC|+2-1=$\sqrt{9+9}$+1=3$\sqrt{2}$+1.

點評 本題考查軌跡方程,解題的關鍵是利用向量條件確定動點坐標之間的關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AB=5,BC=4,AC=CC1=3,D為AB的中點
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求異面直線AC1與CB1所成角的余弦值;
(Ⅲ)求二面角D-CB1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-alnx,a∈R.
(Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)求f(x)在區(qū)間[1,+∞)上的最小值;
(Ⅲ)在(Ⅰ)的條件下,若h(x)=x2-f(x),求證:當1<x<e2時,恒有$x<\frac{4+h(x)}{4-h(x)}$成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,此幾何體的體積為(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=x2+2a|x|+a2-6的圖象與x軸有三個不同的交點,函數(shù)g(x)=f(x)-b有4個零點,則實數(shù)b的取值范圍是(-6,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知A地位于東經30°、北緯45°,B地位于西經60°、北緯45°,則A、B兩地的球面距離與地球半徑的比值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,OM,ON是兩條海岸線,Q為海中一個小島,A為海岸線OM上的一個碼頭.已知tan∠MON=-3,OA=6km,Q到海岸線OM,ON的距離分別為3km,$\frac{{6\sqrt{10}}}{5}$km.現(xiàn)要在海岸線ON上再建一個碼頭,使得在水上旅游直線AB經過小島Q.
(1)求水上旅游線AB的長;
(2)若小島正北方向距離小島6km處的海中有一個圓形強水波P,從水波生成th時的半徑為r=3$\sqrt{at}$(a為大于零的常數(shù)).強水波開始生成時,一游輪以18$\sqrt{2}$km/h的速度自碼頭A開往碼頭B,問實數(shù)a在什么范圍取值時,強水波不會波及游輪的航行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為16cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知U=R,集合A={x|x≥0},B={x|2≤x≤4},則A∩(∁UB)=(  )
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

查看答案和解析>>

同步練習冊答案