分析 (1)根據平面向量數量積的定義和三角形面積公式,求出角θ的取值范圍;
(2)化簡f(θ)為正弦型函數,根據θ的取值范圍求出f(θ)的最值.
解答 解:(1)△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}=8$,
∴bccosθ=8,
∴$bc=\frac{8}{cosθ}$;
又△ABC的面積為$S=\frac{1}{2}bcsinθ=4tanθ$,
∴$\frac{{\sqrt{3}}}{3}≤tanθ≤\sqrt{3}$;
又θ∈(0,π),
∴$θ∈[\frac{π}{6},\frac{π}{3}]$;….(7分)
(2)$f(θ)=2{sin^2}θ-\sqrt{3}sin2θ$
=$1-2(\frac{1}{2}cos2θ+\frac{{\sqrt{3}}}{2}sin2θ)$
=$1-2(sin\frac{π}{6}cos2θ+cos\frac{π}{6}sin2θ)$
=$1-2sin(2θ+\frac{π}{6})$,…(10分)
由(1)知,θ∈[$\frac{π}{6}$,$\frac{π}{3}$],
∴2θ+$\frac{π}{6}$∈[$\frac{π}{2}$,$\frac{5π}{6}$],
∴sin(2θ+$\frac{π}{6}$)∈[$\frac{1}{2}$,1];
當$θ=\frac{π}{6}$時,f(θ)min=1-2×1=-1;
當$θ=\frac{π}{3}$時,f(θ)max=1-2×$\frac{1}{2}$=0.…(14分)(未指出θ值各扣1分)
點評 本題考查了平面向量的數量積運算與三角恒等變換問題,也考查了三角函數的圖象與性質的應用問題,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | {0,1,2} | B. | [0,2] | C. | {0,2} | D. | (0,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,+∞) | B. | (-1,0) | C. | ∅ | D. | [0,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com