13.設(shè)f(x)是定義在R上以2為周期的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x,則x∈[-2,0]時(shí),f(x)的解析式為( 。
A.f(x)=2+|x+1|B.f(x)=2-xC.f(x)=3-|x+1|D.f(x)=2x+4

分析 ①當(dāng)x∈[-2,-1]時(shí),則x+4∈[2,3],由題意可得:f(x+4)=x+4.再根據(jù)函數(shù)的周期性可得f(x)=f(x+4)=x+4.②當(dāng)x∈[-1,0]時(shí),則2-x∈[2,3],由題意可得:f(2-x)=2-x.再根據(jù)函數(shù)的周期性與函數(shù)的奇偶性可得函數(shù)的解析式.

解答 解:①當(dāng)x∈[-2,-1]時(shí),則x+4∈[2,3],
因?yàn)楫?dāng)x∈[2,3]時(shí),f(x)=x,
所以f(x+4)=x+4.
又因?yàn)閒(x)是周期為2的周期函數(shù),
所以f(x)=f(x+4)=x+4.
所以當(dāng)x∈[-2,-1]時(shí),f(x)=x+4.
②當(dāng)x∈[-1,0]時(shí),則2-x∈[2,3],
因?yàn)楫?dāng)x∈[2,3]時(shí),f(x)=x,
所以f(2-x)=2-x.
又因?yàn)閒(x)是周期為2的周期函數(shù),
所以f(-x)=f(2-x)=2-x.
因?yàn)楹瘮?shù)f(x)是定義在實(shí)數(shù)R上的偶函數(shù),
所以f(x)=f(-x)=f(2-x)=2-x.
所以由①②可得當(dāng)x∈[-2,0]時(shí),f(x)=3-|x+1|.
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解,根據(jù)函數(shù)奇偶性和周期性之間的關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.解決此類問(wèn)題的關(guān)鍵是熟練掌握函數(shù)的有關(guān)性質(zhì),即周期性,奇偶性,單調(diào)性等有關(guān)性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下面三段話可組成“三段論”,則“小前提”是(  )
①因?yàn)閷?duì)數(shù)函數(shù)y=logax(a>1)是增函數(shù);
②所以y=log2x是增函數(shù);
③而y=log2x是對(duì)數(shù)函數(shù).
A.B.C.①②D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知$f(α)=\frac{sin(π-α)cos(2π-α)tan(π+α)}{tan(-π-α)sin(-π-α)}$.
(1)化簡(jiǎn)f(α).
(2)若$α=-\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.根據(jù)如表,計(jì)算X2≈( 。
又發(fā)病未發(fā)病
做移植手術(shù)39157
未做移植手術(shù)29167
A.1.51B.1.62C.1.78D.1.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知x,y的一組數(shù)據(jù)如表所示:
x13678
y12345
(1)從x,y中各取一個(gè)數(shù),求x+y≥10的概率:
(2)對(duì)于表中數(shù)據(jù),甲、乙兩同學(xué)給出的擬合直線分別為$y=\frac{1}{3}x+1$與$y=\frac{1}{2}x+\frac{1}{2}$,試判斷哪條直線擬合程度更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在直角坐標(biāo)系xOy中,圓${C_1}:{x^2}-2x+{y^2}=0$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2:ρ=2sinθ.
(1)圓C2的直角坐標(biāo)方程;
(2)圓C1與圓C2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列結(jié)論:①數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$…,的一個(gè)通項(xiàng)公式是an=$\sqrt{3n-1}$; ②已知數(shù)列{an},a1=3,a2=6,且an+2=an+1-an,則數(shù)列的第五項(xiàng)為-6; ③在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=450,則a2+a8=180; ④在等差數(shù)列{an}中,a2=1,a4=5,則{an}的前5項(xiàng)和S5=15,其中正確的個(gè)數(shù)是( 。
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如果執(zhí)行如圖的程序框圖,那么輸出的值是$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.對(duì)于函數(shù)f(x),若在定義域x內(nèi)存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.p:f(x)=m+2x為定義在[-1,1]上的“局部奇函數(shù)”;q:曲線g(x)=x2+(5m+1)x+1與x軸交于不同的兩點(diǎn);若“p∧q”為假命題,“p∨q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案